Open Access Open Badges Research article

Differential baseline and response profile to IFN-γ gene transduction of IL-6/IL-6 receptor-α secretion discriminate primary tumors versus bone marrow metastases of nasopharyngeal carcinomas in culture

Andy Shau-Bin Chou15, Hsin-Yi Wang2, Hung-Chang Chen2, Ming-Hsiu Tsai3, Cheng-Keng Chuang4 and Shuen-Kuei Liao12*

Author Affiliations

1 Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan

2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan

3 Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan

4 Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan

5 Department of Radiology, Tzu-Chi General Hospital, Hualien, Taiwan

For all author emails, please log on.

BMC Cancer 2009, 9:169  doi:10.1186/1471-2407-9-169

Published: 5 June 2009



Understanding of immunobiology of bone marrow metastases (designated BM-NPC) versus primary tumors (P-NPC) of the nasopharynx is far from complete. The aim of this study was to determine if there would be differences between cultured P-NPCs and BM-NPCs with respect to (i) constitutive IL-6 and the IL-6 receptor gp80 subunit (IL-6Rα) levels in the spent media of nontransduced cells, and (ii) IL-6 and IL-6Rα levels in the spent media of cells transduced with a retroviral vector containing the IFN-γ gene.


A panel of NPC cell lines were transduced with the IFN-γ gene through a retroviral vector. Four clonal sublines were isolated via limiting dilution methods. Cytofluorometric analysis was performed for the detection of cell surface antigens of HLA class I, HLA class II and ICAM-1. ELISA was used to assay for IFN-γ, IL-6 and IL-6Rα in the spent media of cultured cell lines.


Our results showed that in day 3 culture supernatants, low levels of soluble IL-6 were detected in 5/5 cultured tumors derived from P-NPCs, while much higher constitutive levels of IL-6 were detected in 3/3 metastasis-derived NPC cell lines including one originated from ascites; the difference was significant (p = 0.025). An inverse relationship was found between IL-6Rα and IL-6 in their release levels in cultured P-NPCs and metastasis-derived NPCs. In IFN-γ-transduced-P-NPCs, IL-6 production increased and yet IL-6Rα decreased substantially, as compared to nontransduced counterparts. At variance with P-NPC cells, the respective ongoing IL-6 and IL-6Rα release patterns of BM-NPC cells were not impeded as much following IFN-γ transduction. These observations were confirmed by extended kinetic studies with representative NPC cell lines and clonal sublines. The latter observation with the clonal sublines also indicates that selection for high IL-6 or low IL-6Rα producing subpopulations did not occur as a result of IFN-γ-transduction process. P-NPCs, which secreted constitutively only marginal levels of IFN-γ (8.4 ~ 10.5 pg/ml), could be enhanced to produce higher levels of IFN-γ (6.8- to 10.3-fold increase) after IFN-γ transduction. Unlike P-NPCs, BM-NPCs spontaneously released IFN-γ at moderate levels (83.8 ~ 100.7 pg/ml), which were enhanced by 1.3- to 2.2-fold in the spent media of their IFN-γ-transduced counterparts.


Our results showed that cultured P-NPCs and BM-NPCs could be distinguished from one another on the basis of their differential baseline secretion pattern of IFN-γ, IL-6 and IL-6Rα, and their differential response profiles to IFN-γ gene transfer of the production of these three soluble molecules. These results suggest that the IL-6 and IFN-γ pathways in a background of genetic instability be involved in the acquisition of metastatic behaviour in BM-NPCs.