Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

This article is part of the supplement: Tenth International Conference on Bioinformatics. First ISCB Asia Joint Conference 2011 (InCoB/ISCB-Asia 2011): Computational Biology

Open Access Open Badges Proceedings

Comparative analysis and assessment of M. tuberculosis H37Rv protein-protein interaction datasets

Hufeng Zhou1 and Limsoon Wong2*

Author Affiliations

1 NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456

2 School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417

For all author emails, please log on.

BMC Genomics 2011, 12(Suppl 3):S20  doi:10.1186/1471-2164-12-S3-S20

Published: 30 November 2011



M. tuberculosis is a formidable bacterial pathogen. There is thus an increasing demand on understanding the function and relationship of proteins in various strains of M. tuberculosis. Protein-protein interactions (PPIs) data are crucial for this kind of knowledge. However, the quality of the main available M. tuberculosis PPI datasets is unclear. This hampers the effectiveness of research works that rely on these PPI datasets. Here, we analyze the two main available M. tuberculosis H37Rv PPI datasets. The first dataset is the high-throughput B2H PPI dataset from Wang et al’s recent paper in Journal of Proteome Research. The second dataset is from STRING database, version 8.3, comprising entirely of H37Rv PPIs predicted using various methods. We find that these two datasets have a surprisingly low level of agreement. We postulate the following causes for this low level of agreement: (i) the H37Rv B2H PPI dataset is of low quality; (ii) the H37Rv STRING PPI dataset is of low quality; and/or (iii) the H37Rv STRING PPIs are predictions of other forms of functional associations rather than direct physical interactions.


To test the quality of these two datasets, we evaluate them based on correlated gene expression profiles, coherent informative GO term annotations, and conservation in other organisms. We observe a significantly greater portion of PPIs in the H37Rv STRING PPI dataset (with score ≥ 770) having correlated gene expression profiles and coherent informative GO term annotations in both interaction partners than that in the H37Rv B2H PPI dataset. Predicted H37Rv interologs derived from non-M. tuberculosis experimental PPIs are much more similar to the H37Rv STRING functional associations dataset (with score ≥ 770) than the H37Rv B2H PPI dataset. H37Rv predicted physical interologs from IntAct also show extremely low similarity with the H37Rv B2H PPI dataset; and this similarity level is much lower than that between the S. aureus MRSA252 predicted physical interologs from IntAct and S. aureus MRSA252 pull-down PPIs. Comparative analysis with several representative two-hybrid PPI datasets in other species further confirms that the H37Rv B2H PPI dataset is of low quality. Next, to test the possibility that the H37Rv STRING PPIs are not purely direct physical interactions, we compare M. tuberculosis H37Rv protein pairs that catalyze adjacent steps in enzymatic reactions to B2H PPIs and predicted PPIs in STRING, which shows it has much lower similarities with the B2H PPIs than with STRING PPIs. This result strongly suggests that the H37Rv STRING PPIs more likely correspond to indirect relationships between protein pairs than to B2H PPIs. For more precise support, we turn to S. cerevisiae for its comprehensively studied interactome. We compare S. cerevisiae predicted PPIs in STRING to three independent protein relationship datasets which respectively comprise PPIs reported in Y2H assays, protein pairs reported to be in the same protein complexes, and protein pairs that catalyze successive reaction steps in enzymatic reactions. Our analysis reveals that S. cerevisiae predicted STRING PPIs have much higher similarity to the latter two types of protein pairs than to two-hybrid PPIs. As H37Rv STRING PPIs are predicted using similar methods as S. cerevisiae predicted STRING PPIs, this suggests that these H37Rv STRING PPIs are more likely to correspond to the latter two types of protein pairs rather than to two-hybrid PPIs as well.


The H37Rv B2H PPI dataset has low quality. It should not be used as the gold standard to assess the quality of other (possibly predicted) H37Rv PPI datasets. The H37Rv STRING PPI dataset also has low quality; nevertheless, a subset consisting of STRING PPIs with score ≥770 has satisfactory quality. However, these STRING “PPIs” should be interpreted as functional associations, which include a substantial portion of indirect protein interactions, rather than direct physical interactions. These two factors cause the strikingly low similarity between these two main H37Rv PPI datasets. The results and conclusions from this comparative analysis provide valuable guidance in using these M. tuberculosis H37Rv PPI datasets in subsequent studies for a wide range of purposes.