Email updates

Keep up to date with the latest news and content from BMC Genomics and BioMed Central.

This article is part of the supplement: The 2008 International Conference on Bioinformatics & Computational Biology (BIOCOMP'08)

Open Access Research

RBT-GA: a novel metaheuristic for solving the multiple sequence alignment problem

Javid Taheri* and Albert Y Zomaya

Author affiliations

School of Information Technologies, J12, The University of Sydney, Sydney, NSW 2006, Australia

For all author emails, please log on.

Citation and License

BMC Genomics 2009, 10(Suppl 1):S10  doi:10.1186/1471-2164-10-S1-S10

Published: 7 July 2009

Abstract

Background

Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees.

Results

This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem.

Conclusion

RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences.