This article is part of the supplement: Proceedings of the Sixth Annual MCBIOS Conference. Transformational Bioinformatics: Delivering Value from Genomes

Open Access Proceedings

Site-specific impacts on gene expression and behavior in fathead minnows (Pimephales promelas) exposed in situ to streams adjacent to sewage treatment plants

Natàlia Garcia-Reyero15, Ira R Adelman2, Dalma Martinović3, Li Liu4 and Nancy D Denslow1*

Author Affiliations

1 Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA

2 Dept. of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA

3 Department of Biology, University of St Thomas, St Paul, MN, USA

4 ICBR, University of Florida, Gainesville, FL 32611, USA

5 Department of Chemistry, Jackson State University, Jackson, MS 39217, USA

For all author emails, please log on.

BMC Bioinformatics 2009, 10(Suppl 11):S11  doi:10.1186/1471-2105-10-S11-S11

Published: 8 October 2009



Environmental monitoring for pharmaceuticals and endocrine disruptors in the aquatic environment traditionally employs a variety of methods including analytical chemistry, as well as a variety of histological and biochemical endpoints that correlate with the fish fitness. It is now clear that analytical chemistry alone is insufficient to identify aquatic environments that are compromised because these measurements do not identify the biologically available dose. The biological endpoints that are measured are important because they relate to known impairments; however, they are not specific to the contaminants and often focus on only a few known endpoints. These studies can be enhanced by looking more broadly at changes in gene expression, especially if the analysis focuses on biochemical pathways. The present study was designed to obtain additional information for well-characterized sites adjacent to sewage treatment plants in MN that are thought to be impacted by endocrine disruptors.


Here we examine five sites that have been previously characterized and examine changes in gene expression in fathead minnows (Pimephales promelas) that have been caged for 48 h in each of the aquatic environments. We find that the gene expression changes are characteristic and unique at each of the five sites. Also, fish exposed to two of the sites, 7 and 12, present a more aggressive behavior compared to control fish.


Our results show that a short-term exposure to sewage treatment plant effluents was able to induce a site-specific gene expression pattern in the fathead minnow gonad and liver. The short-term exposure was also enough to affect fish sexual behavior. Our results also show that microarray analysis can be very useful at determining potential exposure to chemicals, and could be used routinely as a tool for environmental monitoring.