Email updates

Keep up to date with the latest news and content from BMC Medical Genomics and BioMed Central.

Open Access Highly Accessed Research article

Identification of disease-causing genes using microarray data mining and Gene Ontology

Azadeh Mohammadi1*, Mohammad H Saraee1 and Mansoor Salehi2

Author Affiliations

1 Intelligent Databases, Data mining and Bioinformatics Laboratory, Isfahan University of Technology, Isfahan, Iran

2 Dept. of Genetics, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran

For all author emails, please log on.

BMC Medical Genomics 2011, 4:12  doi:10.1186/1755-8794-4-12

Published: 26 January 2011

Abstract

Background

One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes.

Methods

We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results.

Results

The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth.

Conclusions

The proposed method addresses the weakness of conventional methods by adding a redundancy reduction stage and utilizing Gene Ontology information. It predicts marker genes for colon, DLBCL and prostate cancer with a high accuracy. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help in the search for a cure for cancers.