Email updates

Keep up to date with the latest news and content from BMC Proceedings and BioMed Central.

This article is part of the supplement: Proceedings of the International Symposium on Animal Genomics for Animal Health (AGAH 2010)

Open Access Proceedings

Gene expression pattern in swine neutrophils after lipopolysaccharide exposure: a time course comparison

Gema Sanz-Santos1, Ángeles Jiménez-Marín1, Rocío Bautista2, Noé Fernández2, Gonzalo M Claros2 and Juan J Garrido1*

Author Affiliations

1 Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071 Córdoba, Spain

2 Plataforma Andaluza de Bioinformática, Universidad de Málaga, Edificio de Bioinnovación, C/Severo Ochoa 34, Parque Tecnológico de Andalucía, 29590 Málaga, Spain

For all author emails, please log on.

BMC Proceedings 2011, 5(Suppl 4):S11  doi:10.1186/1753-6561-5-S4-S11

Published: 3 June 2011

Abstract

Background

Experimental exposure of swine neutrophils to bacterial lipopolysaccharide (LPS) represents a model to study the innate immune response during bacterial infection. Neutrophils can effectively limit the infection by secreting lipid mediators, antimicrobial molecules and a combination of reactive oxygen species (ROS) without new synthesis of proteins. However, it is known that neutrophils can modify the gene expression after LPS exposure. We performed microarray gene expression analysis in order to elucidate the less known transcriptional response of neutrophils during infection.

Methods

Blood samples were collected from four healthy Iberian pigs and neutrophils were isolated and incubated during 6, 9 and 18 hrs in presence or absence of lipopolysaccharide (LPS) from Salmonella enterica serovar Typhimurium. RNA was isolated and hybridized to Affymetrix Porcine GeneChip®. Microarray data were normalized using Robust Microarray Analysis (RMA) and then, differential expression was obtained by an analysis of variance (ANOVA).

Results

ANOVA data analysis showed that the number of differentially expressed genes (DEG) after LPS treatment vary with time. The highest transcriptional response occurred at 9 hr post LPS stimulation with 1494 DEG whereas at 6 and 18 hr showed 125 and 108 DEG, respectively. Three different gene expression tendencies were observed: genes in cluster 1 showed a tendency toward up-regulation; cluster 2 genes showing a tendency for down-regulation at 9 hr; and cluster 3 genes were up-regulated at 9 hr post LPS stimulation. Ingenuity Pathway Analysis revealed a delay of neutrophil apoptosis at 9 hr. Many genes controlling biological functions were altered with time including those controlling metabolism and cell organization, ubiquitination, adhesion, movement or inflammatory response.

Conclusions

LPS stimulation alters the transcriptional pattern in neutrophils and the present results show that the robust transcriptional potential of neutrophils under infection conditions, indicating that active regulation of gene expression plays a major role in the neutrophil-mediated- innate immune response.