Email updates

Keep up to date with the latest news and content from BMC Proceedings and BioMed Central.

This article is part of the supplement: Proceedings of the 14th European workshop on QTL mapping and marker assisted selection (QTL-MAS)

Open Access Proceedings

Applying different genomic evaluation approaches on QTLMAS2010 dataset

Javad Nadaf and Ricardo Pong-Wong

Author affiliations

The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK

Citation and License

BMC Proceedings 2011, 5(Suppl 3):S9  doi:10.1186/1753-6561-5-S3-S9

Published: 27 May 2011

Abstract

Background

With the availability of high throughput genotyping, genomic selection, the evaluation of animals based on dense SNP genotyping, is receiving more and more attention. Several statistical methods have been suggested for genomic selection. Compared to traditional selection, genomic selection can be more accurate which can lead to higher efficiency in terms of time and cost. Herein we applied different genomic evaluation methods on the 14th QTLMAS dataset.

Methods

Four different approaches were used for the estimation of EBV of animals for the Quantitative and the Binary Trait (QT and BT respectively). It included two Bayes B types of approaches (BB): using only SNP information (GBB) or SNP and Pedigree information (GPBB); and two genomic BLUP, GBLUP and GPBLUP. Traditional BLUP was also used only for comparison. When using BB methodology, the probability of SNP having an effect on the traits (which include a quantitative and a binary trait) were also estimated. We also performed “standard” QTL mapping approaches including linkage and association analyses to compare them with BB results as a potential QTL mapping tools.

Results

For QT, the best accuracy of EBV (correlation between EBVs and TBVs) for young animals, was obtained by BB methods (r = 0.68). Genomic BLUP estimations (GBLUP and GPBLUP) were less accurate (r = 0.60 and 0.61 respectively). Similar results were obtained for the BT: r were estimated at 0.82, 0.82, 0.71 and 0.70 for GPBB, GBB, GPBLUP and GBLUP respectively. Using traditional BLUP, r was at 0.39 and 0.47 for QT and BT respectively. The genetic correlation between the two traits (approximated by the correlation between EBVs for BT and QT using GBB method) was as high as 0.58.

Conclusions

Better accuracies were obtained using BB methods, compared to BLUP analyses. Compared to the traditional BLUP, the accuracy of the EBVs was improved about 70% and 50% using BB and GBLUP methods respectively. The benefit of genomic selection was the same for both the QT and BT. Models with and without polygenic effect led to similar accuracies in the estimation of breeding values. The BT and QT were genetically correlated (r=0.58) which suggested that bivariate analyses may be of advantages. Signal profile by GBB followed well the true QTL patterns, which was consistent with good estimation of EBVs by this method, suggesting its potential value for QTL mapping.