Email updates

Keep up to date with the latest news and content from BMC Proceedings and BioMed Central.

This article is part of the supplement: Institut Pasteur International Network Annual Scientific Meeting

Open Access Oral presentation

Novel strategy using live non-pathogenic Leishmania expressing selected parasite antigens as a candidate vaccine for leishmaniasis

Sima Rafati1*, Amir Mizbani1, Tahere Taheri1, Farnaz Zahedifard1, Yasaman Taslimi1 and Barbara Papadopoulou2

Author Affiliations

1 Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran

2 Research Centre in Infectious Diseases, CHUL Research Centre and Department of Medical Biology, Faculty of Medicine, Laval University, Quebec G1V 4G2, Canada

For all author emails, please log on.

BMC Proceedings 2011, 5(Suppl 1):O6  doi:10.1186/1753-6561-5-S1-O6


The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1753-6561/5/S1/O6


Published:10 January 2011

© 2011 Rafati et al; licensee BioMed Central Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oral presentation

Parasites of the genus Leishmania are intracellular protozoa which are transmitted to their mammalian host by the bite of infected sand flies and cause a group of diseases known as Leishmaniasis. Despite attempting different vaccination strategies, no human vaccine is yet available against this disease. There is increasing evidence that presence of a small number of live parasites is necessary to maintain durable immunity, and the only way to meet this requirement is by using attenuated live vaccines [1]. The main obstacle about attenuated live strains is the risk of reversion of the organism to its virulent state. Another approach to reach this strategy is to use non-pathogenic Leishmania such as L. tarentolae. This parasite is lizard parasite and has never been found associated with any leishmaniasis in humans and is considered as non-pathogenic to humans. Previous studies have shown that L. tarentolae can be used as a live vaccine against L. donovani and elicit a protective Th1 immune response [2]. Recently, by comparative genomic analysis and expression profiles of well-characterized virulence factors such as GP63, CPB, LPG3, Amastin and A2 between pathogenic Leishmania species (e.g. L. major, L. infantum and L. braziliensis) and non pathogenic L. tarentolae revealed that only A2 is absent at the level of DNA [3]. A recombinant L. tarentolae expressing the A2 protein was generated and its potential as a live vaccine against L. infantum infection in BALB/c mice was examined [4]. The A2 expressing recombinant parasites showed higher macrophage infectivity in comparison to L. tarentolae used as a control. Immunization (i.v. and i.p.) of BALB/c mice with recombinant L. tarentolae A2 elicited a strong protective immunity against virulent L. infantum challenge, manifested by a dramatic decrease in parasite burdens in the liver and the spleen of immunized mice. IFN-g production upon antigen stimulation indicated that protection is associated with a Th1 cell-mediated immunity accompanied by reduced levels of IL-5 production (the Th2 type response). Interestingly, although IFN-g production is also induced in groups of mice immunized with wild type L. tarentolae, cytokine levels are increased in the group immunized with the recombinant L. tarentolae A2 and especially when the vaccine regimen is administered via the i.p. route [4]. In continuation of these promising results, we are expanded this idea against L. major infection as a novel vaccine regimen by including two immunogenic parasite proteins (cysteine proteinases A and B, CPA/CPB).

References

  1. Okwor I, Liu D, Uzonna J: Qualitative differences in the early immune response to live and killed Leishmania major: Implications for vaccination strategies against Leishmaniasis.

    Vaccine 2009, 27:2554-2562. PubMed Abstract | Publisher Full Text OpenURL

  2. Breton M, Tremblay MJ, Ouellette M, Papadopoulou B: Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis.

    Infect Immun 2005, 73:6372-6782. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL

  3. Azizi H, Hassani K, Taslimi Y, Najafabadi HS, Papadopoulou B, Rafati S: Searching for virulence factors in the non-pathogenic parasite to humans Leishmania tarentolae.

    Parasitology 2009, 136:723-735. PubMed Abstract | Publisher Full Text OpenURL

  4. Mizbani A, Taheri T, Zahedifard F, Taslimi Y, Azizi H, Azadmanesh K, Papadopoulou B, Rafati S: Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis.

    Vaccine 2009, 28:53-62. PubMed Abstract | Publisher Full Text OpenURL