Email updates

Keep up to date with the latest news and content from BMC Systems Biology and BioMed Central.

Open Access Highly Accessed Research article

Stress induced telomere shortening: longer life with less mutations?

Ala Trusina

Author Affiliations

Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK 2100, Copenhagen, Denmark

BMC Systems Biology 2014, 8:27  doi:10.1186/1752-0509-8-27

Published: 1 March 2014

Abstract

Background

Mutations accumulate as a result of DNA damage and imperfect DNA repair machinery. In higher eukaryotes the accumulation and spread of mutations is limited in two primary ways: through p53-mediated programmed cell death and cellular senescence mediated by telomeres. Telomeres shorten at every cell division and cell stops dividing once the shortest telomere reaches a critical length. It has been shown that the rate of telomere attrition is accelerated when cells are exposed to DNA damaging agents. However the implications of this mechanism are not fully understood.

Results

With the help of in silico model we investigate the effect of genotoxic stress on telomere attrition and apoptosis in a population of non-identical replicating cells. When comparing the populations of cells with constant vs. stress-induced rate of telomere shortening we find that stress induced telomere shortening (SITS) increases longevity while reducing mutation rate. Interestingly, however, the effect takes place only when genotoxic stresses (e.g. reactive oxygen species due to metabolic activity) are distributed non-equally among cells.

Conclusions

Our results for the first time show how non-equal distribution of metabolic load (and associated genotoxic stresses) combined with stress induced telomere shortening can delay aging and minimize mutations.

Keywords:
Telomere shortening; Reactive Oxygen Species (ROS); Cell-to-cell heterogeneity; Genotoxic stress; Mathematical model