Email updates

Keep up to date with the latest news and content from BMC Systems Biology and BioMed Central.

Open Access Research article

Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells

Scott B Crown, Woo Suk Ahn and Maciek R Antoniewicz*

Author Affiliations

Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE, 19716, USA

For all author emails, please log on.

BMC Systems Biology 2012, 6:43  doi:10.1186/1752-0509-6-43

Published: 16 May 2012

Abstract

Background

13C-Metabolic flux analysis (13C-MFA) is a standard technique to probe cellular metabolism and elucidate in vivo metabolic fluxes. 13C-Tracer selection is an important step in conducting 13C-MFA, however, current methods are restricted to trial-and-error approaches, which commonly focus on an arbitrary subset of the tracer design space. To systematically probe the complete tracer design space, especially for complex systems such as mammalian cells, there is a pressing need for new rational approaches to identify optimal tracers.

Results

Recently, we introduced a new framework for optimal 13C-tracer design based on elementary metabolite units (EMU) decomposition, in which a measured metabolite is decomposed into a linear combination of so-called EMU basis vectors. In this contribution, we applied the EMU method to a realistic network model of mammalian metabolism with lactate as the measured metabolite. The method was used to select optimal tracers for two free fluxes in the system, the oxidative pentose phosphate pathway (oxPPP) flux and anaplerosis by pyruvate carboxylase (PC). Our approach was based on sensitivity analysis of EMU basis vector coefficients with respect to free fluxes. Through efficient grouping of coefficient sensitivities, simple tracer selection rules were derived for high-resolution quantification of the fluxes in the mammalian network model. The approach resulted in a significant reduction of the number of possible tracers and the feasible tracers were evaluated using numerical simulations. Two optimal, novel tracers were identified that have not been previously considered for 13C-MFA of mammalian cells, specifically [2,3,4,5,6-13C]glucose for elucidating oxPPP flux and [3,4-13C]glucose for elucidating PC flux. We demonstrate that 13C-glutamine tracers perform poorly in this system in comparison to the optimal glucose tracers.

Conclusions

In this work, we have demonstrated that optimal tracer design does not need to be a pure simulation-based trial-and-error process; rather, rational insights into tracer design can be gained through the application of the EMU basis vector methodology. Using this approach, rational labeling rules can be established a priori to guide the selection of optimal 13C-tracers for high-resolution flux elucidation in complex metabolic network models.

Keywords:
Metabolic flux analysis; Stable-isotope tracers; Experiment design; Pathway analysis; Statistical analysis; Confidence intervals; Mammalian cells; Free fluxes; Mass spectrometry