Figure 3.

Inter-biological process exchanges over the central interactome. High-scoring fluxes between biological processes provide us with a mean to summarize the main function of the central interactome, a subset of the human interactome that is likely to be expressed in all the human cells. In our scoring scheme, high scores represent fluxes that are much more intense than expected from GO term frequencies and protein connectivity, i.e. exchanges significantly favored by protein interactions. GO biological processes are represented as nodes and scores by the edge thickness. (A) Fluxes within the central interactome. The star-like topology with translation (red) at its center shows that most exchanges synchronize other cellular processes with translation. The strongest crosstalk can be observed between translation and GO categories (blue), which contain many members of the nucleic acid metabolism (needed for mRNA generation) and complexes such as signal recognition particle, coatomer protein complex and the splicosome. (B) Fluxes between C.Prot proteins and proteins not in C.Prot. As soon as the focus shifts away from the central interactome, translation loses its role as central communicator. Communication between C.Prot and non C.Prot are less specialized. Also, note the lost interconnectivity of the blue cluster, which reflects reduced activity of the processes mentioned above. (C) This trend is further amplified in the external fluxes between proteins not in C.Prot that become essentially global and ignore translation.

Burkard et al. BMC Systems Biology 2011 5:17   doi:10.1186/1752-0509-5-17
Download authors' original image