Email updates

Keep up to date with the latest news and content from BMC Systems Biology and BioMed Central.

Open Access Highly Accessed Research article

Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma

Hua Dong12, Li Luo2, Shengjun Hong1, Hoicheong Siu1, Yanghua Xiao3, Li Jin1, Rui Chen4 and Momiao Xiong12*

Author Affiliations

1 State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China

2 Human Genetics Center, The University of Texas School of Public Health, Houston, TX 77030, USA

3 Department of Computing and Information Technology, Shanghai (International) Database Research Center, Fudan University, Shanghai, 200433, China

4 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA

For all author emails, please log on.

BMC Systems Biology 2010, 4:163  doi:10.1186/1752-0509-4-163

Published: 29 November 2010

Abstract

Background

Glioblastoma arises from complex interactions between a variety of genetic alterations and environmental perturbations. Little attention has been paid to understanding how genetic variations, altered gene expression and microRNA (miRNA) expression are integrated into networks which act together to alter regulation and finally lead to the emergence of complex phenotypes and glioblastoma.

Results

We identified association of somatic mutations in 14 genes with glioblastoma, of which 8 genes are newly identified, and association of loss of heterozygosity (LOH) is identified in 11 genes with glioblastoma, of which 9 genes are newly discovered. By gene coexpression network analysis, we indentified 15 genes essential to the function of the network, most of which are cancer related genes. We also constructed miRNA coexpression networks and found 19 important miRNAs of which 3 were significantly related to glioblastoma patients' survival. We identified 3,953 predicted miRNA-mRNA pairs, of which 14 were previously verified by experiments in other groups. Using pathway enrichment analysis we also found that the genes in the target network of the top 19 important miRNAs were mainly involved in cancer related signaling pathways, synaptic transmission and nervous systems processes. Finally, we developed new methods to decipher the pathway connecting mutations, expression information and glioblastoma. We indentified 4 cis-expression quantitative trait locus (eQTL): TP53, EGFR, NF1 and PIK3C2G; 262 trans eQTL and 26 trans miRNA eQTL for somatic mutation; 2 cis-eQTL: NRAP and EGFR; 409 trans- eQTL and 27 trans- miRNA eQTL for lost of heterozygosity (LOH) mutation.

Conclusions

Our results demonstrate that integrated analysis of multi-dimensional data has the potential to unravel the mechanism of tumor initiation and progression.