Email updates

Keep up to date with the latest news and content from BMC Medicine and BioMed Central.

Journal App

google play app store
Open Access Highly Accessed Commentary

Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?

Federica Sotgia123, Ubaldo E Martinez-Outschoorn124 and Michael P Lisanti1234*

Author Affiliations

1 The Jefferson Stem Cell Biology and Regenerative Medicine Center, Philadelphia, PA, USA

2 Departments of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA

3 Manchester Breast Centre and Breakthrough Breast Cancer Research Unit, Paterson Institute for Cancer Research, Manchester, UK

4 Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA

For all author emails, please log on.

BMC Medicine 2011, 9:62  doi:10.1186/1741-7015-9-62

Published: 23 May 2011

Abstract

The functional role of oxidative stress in cancer pathogenesis has long been a hotly debated topic. A study published this month in BMC Cancer by Goh et al., directly addresses this issue by using a molecular genetic approach, via an established mouse animal model of human breast cancer. More specifically, alleviation of mitochondrial oxidative stress, via transgenic over-expression of catalase (an anti-oxidant enzyme) targeted to mitochondria, was sufficient to lower tumor grade (from high-to-low) and to dramatically reduce metastatic tumor burden by >12-fold. Here, we discuss these new findings and place them in the context of several other recent studies showing that oxidative stress directly contributes to tumor progression and metastasis. These results have important clinical and translational significance, as most current chemo-therapeutic agents and radiation therapy increase oxidative stress, and, therefore, could help drive tumor recurrence and metastasis. Similarly, chemo- and radiation-therapy both increase the risk for developing a secondary malignancy, such as leukemia and/or lymphoma. To effectively reduce mitochondrial oxidative stress, medical oncologists should now re-consider the use of powerful anti-oxidants as a key component of patient therapy and cancer prevention.

Please see related research article: http://www.biomedcentral.com/1471-2407/11/191 webcite