Email updates

Keep up to date with the latest news and content from BMC Medicine and BioMed Central.

Journal App

google play app store
Open Access Highly Accessed Commentary

Infant EEG activity as a biomarker for autism: a promising approach or a false promise?

Richard Griffin1* and Chris Westbury2

Author affiliations

1 Department of Psychology & Center for Cognitive Studies, Tufts University, Medford, MA, USA

2 Department of Psychology, University of Alberta, Edmonton, AB, Canada

For all author emails, please log on.

Citation and License

BMC Medicine 2011, 9:61  doi:10.1186/1741-7015-9-61

Published: 20 May 2011


The ability to determine an infant's likelihood of developing autism via a relatively simple neurological measure would constitute an important scientific breakthrough. In their recent publication in this journal, Bosl and colleagues claim that a measure of EEG complexity can be used to detect, with very high accuracy, infants at high risk for autism (HRA). On the surface, this appears to be that very scientific breakthrough and as such the paper has received widespread media attention. But a close look at how these high accuracy rates were derived tells a very different story. This stems from a conflation between "high risk" as a population-level property and "high risk" as a property of an individual. We describe the approach of Bosl et al. and examine their results with respect to baseline prevalence rates, the inclusion of which is necessary to distinguish infants with a biological risk of autism from typically developing infants with a sibling with autism. This is an important distinction that should not be overlooked.

Please see research article: webcite and correspondence article: webcite