Additional file 8.

Relative position of catalytic and crystal dimer interface. The structure of Irga6-M173A [14] is shown. Protein domains are shown as indicated in the Figure 1. (a and b) Residues buried in the interface of the Irga6 dimer model were calculated with CNSsolve [59] module buried surface [60] with a probe radius of 1.4 Å. The surface formed by Glu77, Thr78, Gly79, Asn94, Glu95, Lys101, Thr102, Gly103, Glu106, Val107, Gly131, Ser132, Thr133, Pro136, Pro137, Ala157, Thr158, Arg159, Phe160, Lys161, Lys162, Asn163, Asp166, Lys184, Asp186, Ser187, Asp188, Thr190, Asn191, Asp194, Gly195 and Lys233 is shown in magenta. (c and d) Residues buried in the crystal dimer interface were calculated by the same method. The two surfaces formed by Asn14, Ser18, Gln36, Glu37, Asn40, Leu41, Glu43, Leu44, Arg47, Lys48, Pro137, Asn138, Thr139, Leu141, Glu142, Tyr147, Asp166, Ala168, Lys169, Ala170, Ser172, Ala173 (instead of Met173), Met174, Lys175, Lys176, Glu177, Phe178, Arg218, Gly221, Ile222, Ala223 and Glu224 are shown. Three dimeric crystal structures of Irga6 are available (PDB 1TPZ, 1TQ2 and 1TQD) [14] therefore each residue can be maximum six time involved in this interface. Residues highly relevant for the crystal dimer interface are shown in red, less relevant in yellow. (a and c) Front view of the G-domain (Figure 1a). (b and d) Left view (Figure 1f).

Format: PDF Size: 441KB Download file

This file can be viewed with: Adobe Acrobat Reader

Pawlowski et al. BMC Biology 2011 9:7   doi:10.1186/1741-7007-9-7