Open Access Research article

Psychometric properties of the Hospital Survey on Patient Safety Culture for hospital management (HSOPS_M)

Antje Hammer1*, Nicole Ernstmann1, Oliver Ommen1, Markus Wirtz2, Tanja Manser3, Yvonne Pfeiffer4 and Holger Pfaff1

Author Affiliations

1 Institute for Medical Sociology, Health Services Research and Rehabilitation Science, Faculty of Human Science and Faculty of Medicine, University of Cologne; Cologne; Germany

2 Institute for Psychology, University of Education Freiburg; Freiburg; Germany

3 University of Fribourg, Department of Psychology; Fribourg; Switzerland

4 ETH Zurich - Center for Organizational and Occupational Sciences; Zurich; Switzerland

For all author emails, please log on.

BMC Health Services Research 2011, 11:165  doi:10.1186/1472-6963-11-165

The electronic version of this article is the complete one and can be found online at:

Received:10 December 2010
Accepted:11 July 2011
Published:11 July 2011

© 2011 Hammer et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



From a management perspective, it is necessary to examine how a hospital's top management assess the patient safety culture in their organisation. This study examines whether the Hospital Survey on Patient Safety Culture for hospital management (HSOPS_M) has the same psychometric properties as the HSOPS for hospital employees does.


In 2008, a questionnaire survey including the HSOPS_M was conducted with 1,224 medical directors from German hospitals. When assessing the psychometric properties, we performed a confirmatory factor analysis (CFA). Additionally, we proved construct validity and internal consistency.


A total of 551 medical directors returned the questionnaire. The results of the CFA suggested a satisfactory global data fit. The indices of local fit indicated a good, but not satisfactory convergent validity. Analyses of construct validity indicated that not all safety culture dimensions were readily distinguishable. However, Cronbach's alpha indicated that the dimensions had an acceptable level of reliability.


The analyses of the psychometric properties of the HSOPS_M resulted in reasonably good levels of property values. Although the set of dimensions within the HSOPS_M needs further scale refinement, the questionnaire covers a broad range of sub-dimensions and supplies important information on safety culture. The HSOPS_M, therefore, is eligible to measure safety culture from the hospital management's points of view and could be used in nationwide hospital surveys to make inter-organisational comparisons.


Safety culture is an aspect of organisational culture that relies on safety issues in organisations. Guldenmund characterised organisational culture as a relatively stable, multidimensional construct that depends on shared values and norms in the work environment [1]. These values and norms affect the attitudes, perceptions and behaviour of all organisational members. Safety culture, as a part of organisational culture, therefore, has a fundamental impact on safety behaviour and, in turn, on safety in organisations as a whole. It is a multidimensional phenomenon that is defined here as a common stock in knowledge, values and symbols about patients' safety. Organisations with a positive safety culture are characterised by open communications based on a common foundation of values and trust, as well as shared perceptions and mutual support among individual organisational members [2,3].

Measuring safety culture in health care received increased attention at the end of the 1990s. This was contributed to by the publication of the report To err is human by the Institute of Medicine (IOM) [4]. Early measures of safety culture in health care were adapted from those used in industrial sectors in the late 1990s [5]. Since then, a large number of surveys have been published regarding safety culture in health care settings [6-8].

Nonetheless, safety culture is still a major issue in health care research. This is reinforced by the increasing external pressure on health care organisations to provide safe and high quality health care. Prior research has concluded that the attitudes, perceptions, expectations and actions of hospitals' top management regarding patient safety is an essential dimension of safety culture [5,7-12]. Organisational improvement towards safety culture is largely based on the commitment of the hospital management, whose members, such as medical directors, are essential decision makers. The hospital management is responsible for the establishment of policies and procedures on quality improvement and hospital safety culture [13]. From the management perspective, it is necessary to examine how they assess safety culture in their own organisations. This point of view on hospital safety culture is important for their decisions. In addition, Rousseau [14] stated that the use of key informants is common practice in research into organisational culture. Key informants, such as members of the hospital management, are presumed to have a comprehensive knowledge about their organisations. However, most safety culture surveys measure safety culture from the frontline staff's points of view.

Although the commitment and perceptions of hospital managers are expected to be important for patient safety, there exists no tool for measuring safety culture from the hospital management's points of view. Therefore, the well-known Hospital Survey on Patient Safety Culture (HSOPS) [15] was adapted to assess the safety culture perceptions of hospital managers, such as medical directors, in German hospitals (HSOPS_M). Thus, the purpose of this study was to test (1) whether the HSOPS_M could be used in a management survey and (2) if the psychometric properties of the HSOPS_M are comparable to those of the HSOPS for hospital employees.


Study design and population

The following analyses are based on data of the project Effects of Hospital Ownership Structures on Quality of Health Care (HOSQua) funded by the German Medical Association. This study has been approved by the Research Ethics Board at the University of Cologne.

Data were gathered between April and October 2008 within a cross-sectional, retrospective postal survey. The questionnaires were distributed to 1,224 medical directors from all German hospitals that fulfilled the following criteria: at least one internal medicine and one surgery unit. In order to increase the response rate we examined the classic total design method by using timed reminder and follow-up mailings (including the questionnaire again) [16,17].


The HSOPS has been used worldwide in more than 30 countries. As far as is known, this survey for hospital employees has been translated and adapted for use in 14 European countries (Belgium, Denmark, France, Ireland, Italy, the Netherlands, Norway, Portugal, Scotland, Spain, Sweden, Switzerland, Turkey and the United Kingdom). To measure safety culture from the hospital management's points of view in German hospitals, we adapted the Swiss-German version [18] of the HSOPS to assess medical directors' views of German hospitals. The final version for the hospital management, especially the medical directors (HSOPS_M), slightly differs from the original HSOPS (e.g. we excluded the individual item outcome measure Number of events reported; the management version only uses the term staff instead of people). It consisted of 43 items: 10 safety culture dimensions and two outcome dimensions, as well as the individual item outcome measure Patient safety grade. The questionnaire scale items are listed in Table 1. Most items of these dimensions are rated on a five-point Likert scale ranging from I strongly disagree (1) to I strongly agree (5). Some items are rated on a five-point frequency scale from Never (1) to Always (5). The HSOPS_M questionnaire can be downloaded as additional file 1: Hospital Survey on Patient Safety Culture for hospital management (HSOPS_M). A German version of HSOPS_M is available on request.

Table 1. Questionnaire scale items

Additional file 1. Hammer_BMC_HSOPS_M_Questionnaire. Hospital Survey on Patient Safety Culture for hospital management (HSOPS_M). HSOPS_M (English version)

Format: PDF Size: 28KB Download file

This file can be viewed with: Adobe Acrobat ReaderOpen Data

Data analyses

Before starting the in-depth analysis, respondents with missing values of > 30% in scale items were excluded because of the limited data quality. Afterwards, missing values were replaced by a multiple imputation based on expectation maximization (EM) algorithm with the statistical software NORM 2.03 [19]. Further analyses were started after a necessary reverse coding of negatively worded items.

Within the pre-analyses, we calculated the Kaiser-Meyer-Olkin (KMO) and Measure of Sample Adequacy (MSA) coefficients. The value of the KMO coefficient indicates whether the sample of items is adequate for a factor analysis or not, whereas the MSA coefficient proves whether a single item is suitable for a factor analysis or not. For both, KMO coefficient and MSA coefficient values of > .60 imply a good applicability and values of > .90 imply a perfect applicability [20]. Finally, we performed Bartlett's test. A high significant p-value (p < .001) indicates an appropriate dataset for factor analysis.

Using the maximum likelihood method, we performed a confirmatory factor analysis (CFA) [21] to check whether the theoretical and empirical developed factor structure of the original version for hospital employees fits to the data of the German version for the hospital management. The appropriateness of the CFA model was assessed by measures of global and local fits [21,22]. To evaluate the global fit of the 12-factor model we assessed the goodness-of-fit with the Chi-squared values, which indicate the difference between the observed and the expected covariance matrices [21,22]. To reduce the sensitivity of the Chi-squared value to the sample size we computed a normed Chi-squared value (Chi2/df) using the recommended cut-off value of ≤ 2.5 [23]. In addition, the following incremental and descriptive measures of model fit were calculated: (1) Comparative Fit Index (CFI); (2) Tucker-Lewis Index (TLI); (3) Root Mean Square Error of Approximation (RMSEA); and (4) Standardised Root Mean Residual (SRMR). Using recommended criteria for a sample size N > 250 and a number of observed variables m > 30, we determined the cut-off values of ≥ .90 for CFI and TLI, ≤ .07 for RMSEA and ≤ .08 for SRMR [22]. Furthermore, the local fit of the items of the proposed factor structure were estimated with the following criteria and cut-off values: indicator reliability (≥ .30), factor reliability (≥ .60) and Average Variance Extracted (AVE; ≥ .50) [24]. These local fit indicators assess the degree to which the instrument is reliable and valid.

In a second step, the construct validity was tested by calculating the Fornell-Larcker Ratio (FLR) [25-27]. According to Fornell and Larcker [26], discriminant validity is given when the AVE of a factor is greater than the highest squared inter-correlation with any other factor of the model. Values of < 1 indicate that constructs within the model are sufficiently distinguishable. Furthermore, we calculated Pearson's correlation coefficients for all 12 safety culture dimensions after calculating a composite score for each dimension. According to Campbell and Fiske [28], we determined a cut-off value of ≥ .70. Higher values indicate that the dimensions measure the same concepts. Pearson's correlation values of < .20 would indicate a poor relationship between two safety culture dimensions [29]. Despite all 12 dimensions measure safety culture, we assumed that sufficient inter-correlations would be reflected by moderate Pearson's correlation coefficient values. Additionally, we calculated correlations between the 12 safety culture dimensions and the individual item outcome measure Patient safety grade. We expected significant positive correlations.

Finally, the internal consistency was measured by using Cronbach's alpha for each of the 12 dimensions. Cronbach's alpha is a measure of how strongly items are correlated [30]. A value of zero indicates no correlation between the items, whereas a value of one indicates a perfect correlation. If items are related too closely, the information of the items is redundant. Therefore, a good value of Cronbach's alpha is between .70 and .90 [20,21,30]. The reliability of the scales were compared to the results of the original HSOPS by Sorra and Nieva, who defined the acceptable level of Cronbach's alpha as ≥ .60 [15].

All statistical analyses were performed using the statistic software SPSS 18.0 and AMOS 18.0.


Sample characteristics

The overall response rate was 45% (551 out of 1,224 questionnaires). Of those, four respondents were excluded because of limited data quality (missing values of > 30% in scale items). Finally, 547 questionnaires were included in the analysis. For these, we observed a mean average of 0.32% missing values in the items of the scales. The missing values were imputed applying the EM algorithm [19]. Descriptive statistics, including means and standard deviations for all items within the scales, are presented in Table 2.

Table 2. Descriptive statistics of the scales and items included in the CFA

The value of the KMO coefficient was .947. This indicated that the patterns of correlations are very compact and a factor analysis is appropriate for our data [20]. The values of the MSA coefficients ranged between .87 (A5) and .98 (C5). Except for two items (A5 and D2), all items reached a superior value of > .90. Therefore, both the KMO test and the MSA test indicated that the data fit the criteria for a factor analysis [20]. Finally, the p-value of < .001 within Bartlett's test indicated an appropriate data structure for applying factor analysis.

Confirmatory factor analysis

The results of the CFA model indicated a satisfactory global data fit: Chi2 = 1,632.71; df = 753; p < .000; Chi2/df = 2.168. According to the criterion by Hair et al. [22], of the more than 30 observed items and the minimum of 250 observations the model exhibited an acceptable-to-good global data fit (Table 3).

Table 3. Model fits of the 12 HSOPS_M dimensions

Furthermore, two out of three indices of local fit, as presented in Table 4 indicated a good convergent validity: except for the dimension Supervisor/manager expectations/actions, no scale included more than one item with an indicator reliability ≤ .30. Additionally, the factor reliabilities exceeded the recommended critical values of ≥ .60. However, according the AVE, only the four factors Hospital management support for patient safety, Hospital handoffs and transitions, Feedback and communication about error and Frequency of event reporting reached acceptable values of ≥ .50.

Table 4. Local fit of items within the 12 HSOPS_M dimensions

Construct validity

Concerning the FLR (Table 4), only three dimensions (Hospital management support for patient safety, Staffing and Frequency of event reporting) showed acceptable values. All of the other values indicated that these dimensions were not sufficiently distinguishable from the other dimensions within the model. The inter-correlations for the 12 safety culture dimensions are shown in Table 5. The correlations ranged from .13 (between Staffing and Frequency of event reporting) to .64 (between Hospital management support and Overall perception of safety). Except for the correlation between Staffing and Frequency of event reporting, all correlations reached acceptable values between .20 and .70. Nonetheless, several intercorrelations reached values higher .5. This indicated that there was not at all a moderate relationship between the safety culture dimensions, and supported the result, that not all safety culture dimensions were sufficiently distinguishable. Furthermore, we calculated correlations between the 12 safety culture dimensions and the individual outcome measure Patient safety grade. The lowest correlation of this outcome measure was with Staffing (r = 0.32), and the highest correlation was with Overall perceptions of safety (r = 0.62).

Table 5. Inter-correlations of the 12 HSOPS_M dimensions


The reliability measured by Cronbach's alpha ranged from .61 to .87 (Table 6), whereas the levels of Cronbach's alphas for Supervisor/manager expectations/actions, Communication openness and Organizational learning were below an adequate value of .70. The other dimensions reached acceptable reliability coefficients. Compared with the results found from the US data, Staffing had a much higher alpha in the German data. However, the scales Communication openness and Organizational learning had much lower alphas in the German data.

Table 6. Reliability of the 12 safety culture dimensions in the German data compared with the US data


The HSOPS is one of the most frequently used questionnaires to assess safety culture in health care settings. Until now, this questionnaire has been used to evaluate safety culture from employees' points of view. There exist an increasing number of studies testing how consistently the HSOPS questionnaire measures safety culture dimensions [18,29,31-33]. However, these surveys have all been tested with medical staff only. Because it is important to test whether the HSOPS is also applicable for assessing single views of a hospital's safety culture, the purpose of our study was to test the psychometric properties of the HSOPS adapted for hospital management (HSOPS_M).

The CFA indicated that the factor structure of the original HSOPS fits the data of the German version for medical directors. The factor model exhibited an acceptable-to-good global data fit. Furthermore, the local fit indices were considered acceptable. Regarding the indicator reliability, most indicators, except one, exceeded the acceptable values. All factors reached the recommended critical values for the factor reliabilities, but only four factors reached adequate AVE values. These results suggested a good convergent validity. The results of the local fit indicators, especially for the AVE, found in this study are comparable to the results of the Swiss-German version of the HSOPS [18].

According the construct validity, only three dimensions reached satisfactory values for the FLR. Therefore, the construct validity of the factor model can be considered less acceptable. The values of FLR indicated that the factors measured not readily distinguishable dimensions. The values of the FLR are similar to the Swiss data analysis [18]. Furthermore, the inter-correlations between all 12 safety culture dimensions ranged between .13 and .64. We found several correlations higher than .5, which supported the result that the dimensions were not at all independent of each other. One possible reason for the high values of FLR and high intercorrelations could be that theoretically correlated dimensions (e.g. Feedback and communication about error and Communication openness; Hospital management support for patient safety and Supervisor/manager expectations/actions) are measured with different constructs. This suggested further investigation, especially on the question whether these dimensions should be measured in one dimension. Nonetheless, as expected, all 12 safety culture dimensions correlated with the outcome variable Patient safety grade. We found a high correlation between Patient safety grade and Overall perceptions of safety, which is a good indication of the validity of the latter dimension.

Finally, the analysis of Cronbach's alpha signified that the dimensions have an acceptable level of reliability. In nine out of the 12 dimensions hypothesised in the origin factor model, the Cronbach's alpha ranged between .73 and .87. In addition, the alpha of the factor Supervisor/manager expectations/actions was not much below the recommended cut-off value of .70. In particular, for Communication openness and Organizational learning, the lower values of Cronbach's alpha can probably be attributed to the different survey designs (e.g. measuring management perception versus the perceptions of frontline staff). Nevertheless, a comparison of these reliabilities with other European HSOPS surveys showed that Communication openness [18,32] and Organizational learning [18,31,32] repeatedly had low Cronbach's alpha values.

Overall, the construct validity indicated that further scale refinement is needed to improve the questionnaire. To minimise differences between the survey versions, we refrained from reducing or adding any scales within the instrument. Nonetheless, model modifications should not generally be excluded. Especially in cases of high intercorrelations between dimensions, which are theoretically high correlated, further scale refinement could lead to better psychometric properties. In this respect, we agree with Pfeiffer and Manser [18] that the set of dimensions within the HSOPS still has to be optimised.

The findings of our study are limited by the following aspects. The results of this study are based on a cross-sectional mail survey with a response rate of 45%. Although little is known about potential non-response bias with these kinds of surveys, we assumed that the attitudes of the responding medical directors do not differ from those of non-responding medical directors [34].

Within the scope of this study, we were not able to examine the relationship between patient safety culture and objective patient safety outcomes, such as patient safety indicators or frequencies of medical errors. Therefore, we agree with previous suggestions [7,29] that more evidence is needed on the relationship between patient safety culture and patient safety outcomes.

Comparing the psychometric properties of the HSOPS_M to those of the original HSOPS for hospital employees means not only comparing different countries, but also different methods. Most safety culture surveys are used to measure safety culture from the frontline staff's points of view. Assessing safety culture only with medical directors excludes the views of frontline staff and does not take the potential differences between hospital units [35-38] into account. Therefore, we think the area of application of the HSOPS_M is different from traditional hospital-related safety culture instruments. According to Rousseau [14], we presupposed that the points of view of key informants, such as medical directors, were representative of hospital professionals in identifying safety culture for the whole hospital. Hospital managers are expected to make decisions regarding quality improvement and patient safety issues. In addition, essential decision makers - such as medical directors - have a comprehensive knowledge about their organisations. Therefore, questioning the top management offers a different approach to measuring safety culture and providing aggregated organisational data. For analysing the safety culture in different hospitals units, further research should consider using the HSOPS_M for hospital unit managers as well.

Finally, the HSOPS_M was embedded in a larger questionnaire within the HOSQua-study, which could be a possible factor that influenced the responses of the medical directors. According to Linsky [39], we assumed that the length of the questionnaire would not necessarily influence the validity or reliability of the HSOPS. Nonetheless, further analyses on validity and reliability should be performed using the HSOPS_M questionnaire only.


The HSOPS questionnaire covers a wide range of sub-dimensions. In addition to the most frequently included concepts, such as management commitment, supervisor commitment, communication openness, and safety system, the HSOPS uses dimensions such as feedback and communication about errors/events, organizational learning, handoffs and transitions, staffing and teamwork. As such, the HSOPS provides a broad range of important information on safety culture, although, the results of the psychometric properties of the HSOPS_M suggest that further scale refinement and model modifications are needed. While the lack of confirmation of factor structure was found in other European studies using the HSOPS for hospital employees, it should be noted that several dimensions emerged relatively consistently across national settings. Therefore, we suggest investigating the HSOPS_M in different national and international settings, to optimise the set of safety culture dimensions. The HSOPS_M could then be used in nationwide hospital surveys to assess the top management's views on safety culture in hospitals for subsequent inter-organisational comparisons. For example, the HSOPS_M could be used as a measurement to prove interventions on safety performance in hospitals from the top management's points of view. Nonetheless, further research regarding the relationship between safety culture and other variables (e.g., mortality rates and patient safety indicators) is needed.

List of abbreviations used

(AVE): Average Variance Extracted; (Chi2/df): Chi-squared value; (CFI): Comparative Fit Index; (CFA): Confirmatory factor analysis; (HOSQua): Effects of Hospital Ownership Structures on Quality of Health Care; (EM): Expectation maximization; (FLR): Fornell-Larcker Ratio; (HSOPS): Hospital Survey on Patient Safety Culture; (HSOPS_M): Hospital Survey on Patient Safety Culture for hospital management; (IOM): Institute of Medicine; (KMO): Kaiser-Meyer-Olkin coefficient; (MSA): Measure of Sample Adequacy coefficient; (RMSEA): Root Mean Square Error of Approximation; (SRMR): Standardised Root Mean Residual; (TLI): Tucker-Lewis Index.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AH - Conception and design of the study, data gathering, data analysis, interpretation of the data, drafting of the manuscript, revising manuscript, final approval; NE - Interpretation of the data, revising manuscript, interpretation of the data, final approval; OO - Operative project leader, conception and design of the study, revising manuscript, final approval; MW - Data analysis, revising manuscript, interpretation of the data, final approval; TM, YP - Support in adapting the HSOPS for medical directors, editing the retranslation, revising manuscript, final approval; HP - Conception and design of the study, revising manuscript, interpretation of the data, final approval

Acknowledgements and Funding

The authors thank all medical directors who contributed to the study by responding to the questionnaire. We would like to acknowledge the funding provided by the German Medical Association and would like to thank Guenther Heller and Christian Guenster from the Research Institute of the Local Healthcare Insurance in Berlin for their collaboration. Furthermore, we are grateful to Joann Sorra, Martha Franklin and Dawn Nelson from Westat (Rockville, US) for their support in using the original HSOPS and editing the retranslation of the HSOPS_M. The views expressed in this article do not necessarily represent the views of the German Medical Association, the Research Institute of the Local Healthcare Insurance in Berlin or Westat.


  1. Guldenmund FW: The nature of safety culture: a review of theory and research.

    Saf Sci 2000, 34:215-257. Publisher Full Text OpenURL

  2. Health and Safety Commission (HSC). Advisory Committee on the Safety of Nuclear Installations (ACSNI): ACSNI study group on human factors: Third report - Organising for safety. Sudbury: HSE Books; 1993. OpenURL

  3. Pfaff H, Hammer A, Ernstmann N, Kowalski C, Ommen O: [Safety culture: definition, models and design].

    Z ärztl Fortbild Qual Gesundh wes 2009, 103:493-497. PubMed Abstract | Publisher Full Text OpenURL

  4. Kohn LT, Corrigan JM, Donaldson MS: To err is human - Building a safer health system. Washington D.C.: National Academy Press; 1999. OpenURL

  5. Flin R: Measuring safety culture in healthcare: A case for accurate diagnosis.

    Saf Sci 2007, 45:653-667. Publisher Full Text OpenURL

  6. Flin R, Burns C, Mearns K, Yule S, Robertson EM: Measuring safety climate in health care.

    Qual Saf Health Care 2006, 15:109-115. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL

  7. Colla JB, Bracken AC, Kinney LM, Weeks WB: Measuring patient safety climate: A review of surveys.

    Qual Saf Health Care 2005, 14:364-366. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL

  8. Singla AK, Kitch BT, Weissman JS, Campbell EG: Assessing patient safety culture: A review and synthesis of the measurement tools.

    J Patient Saf 2006, 2:105-115. Publisher Full Text OpenURL

  9. Zohar D: A group-level model of safety climate: Testing the effect of group climate on microaccidents in manufacturing jobs.

    J Appl Psychol 2000, 85:587-596. PubMed Abstract | Publisher Full Text OpenURL

  10. Sorensen JN: Safety culture: A survey of the state-of-the-art.

    Reliab Eng Syst Saf 2002, 76:189-204. Publisher Full Text OpenURL

  11. Goodman GR: A fragmented patient safety concept: The structure and culture of safety management in healthcare.

    Hosp Top 2003, 81:22-29. PubMed Abstract | Publisher Full Text OpenURL

  12. Kirk S, Parker D, Claridge T, Esmail A, Marshall M: Patient safety culture in primary care: Developing a theoretical framework for practical use.

    Qual Saf Health Care 2007, 16:313-320. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL

  13. Zohar D, Tenne-Gazit O: Transformational leadership and group interaction as climate antecedents: A social network analysis.

    J Appl Psychol 2008, 93:744-757. PubMed Abstract | Publisher Full Text OpenURL

  14. Rousseau DM: Assessing organizational culture: The case of multiple methods. In Organizational climate and culture. Edited by Schneider B. San Francsisco, CA: Jossey-Bass Pub; 1990:153-192. OpenURL

  15. Sorra J, Nieva V: Hospital survey on patient safety culture. Rockville, MD; 2004. OpenURL

  16. Dillman DA: Mail and telephone survey: The Total Design Method. New York: Wiley & Sons; 1978. OpenURL

  17. Dillman DA: Mail and internet survey: The Tailored Design Method. New York: Wiley & Sons; 2000. OpenURL

  18. Pfeiffer Y, Manser T: Development of the German version of the hospital survey on patient safety culture: Dimensionality and psychometric properties.

    Saf Sci 2010, 48:1452-1462. Publisher Full Text OpenURL

  19. Schafer JL, Graham JW: Missing data: Our view of the state of the art.

    Psychol Methods 2002, 7:147-177. PubMed Abstract | Publisher Full Text OpenURL

  20. Field A: Discovering statistics using SPSS. London u.a.: Sage; 2009. OpenURL

  21. Kline RB: Principles and practice of structural equation modeling. New York: Guildford; 2005. OpenURL

  22. Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL: Multivariate data analysis. New Jersey: Pearson Prentice Hall; 2006. OpenURL

  23. Bollen KA: Structural equations with latent variables. New York u.a.: Wiley & Sons; 1989. OpenURL

  24. Zwingmann C, Wirtz M, Müller C, Körber J, Murken S: Positive and negative religious coping in German breast cancer patients.

    J Behav Med 2006, 29:533-547. PubMed Abstract | Publisher Full Text OpenURL

  25. Lievens F, Anseel F: Confirmatory factor analysis and invariance of an organizational citizenship behaviour measure across samples in a Dutch-speaking context.

    J Occup Organ Psychol 2004, 77:299-306. Publisher Full Text OpenURL

  26. Fornell C, Larcker DF: Evaluating structural equation models with unobservable variables and measurement error.

    J Mark Res 1981, 18:39-50. Publisher Full Text OpenURL

  27. Zwingmann C, Wirtz M, Müller C, Körber J, Murken S: Positive and negative religious coping in German breast cancer patients.

    J Behav Med 2006, 29:533-547. PubMed Abstract | Publisher Full Text OpenURL

  28. Campbell DT, Fiske DW: Convergent and discriminant validation by the multitrait-multimethod matrix.

    Psychol Bull 1959, 56:81-105. PubMed Abstract OpenURL

  29. Sorra J, Dyer N: Multilevel psychometric properties of the AHRQ Hospital Survey on Patient Safety Culture.

    BMC Health Serv Res 2010, 10:199. PubMed Abstract | BioMed Central Full Text | PubMed Central Full Text OpenURL

  30. Campbell DA, Thompson M: Patient safety rounds: Description of an inexpensive but important strategy to improve the safety culture.

    Am J Med Qual 2007, 22:26-33. PubMed Abstract | Publisher Full Text OpenURL

  31. Smits M, Christiaans-Dingelhoff I, Wagner C, van der Wal G, Groenewegen PP: The psychometric properties of the 'Hospital Survey on Patient Safety Culture' in Dutch hospitals.

    BMC Health Serv Res 2008., 8 OpenURL

  32. Waterson P, Griffiths P, Stride C, Murphy J, Hignett S: Psychometric properties of the hospital survey on patient safety culture: Findings from the UK.

    Qual Saf Health Care 2010, 19:1-5. OpenURL

  33. Olsen E: Reliability and validity of the hospital survey on patient safety culture at a Norwegian hospital. Lisbon: National School of Public Health; 2008. OpenURL

  34. Groves RM: Nonresponse rates and nonresponse bias in household surveys.

    Public Opin Q 2006, 70:646-675. Publisher Full Text OpenURL

  35. Hartmann CW, Rosen AK, Meterko M, Shokeen P, Zhao S, Singer S, Falwell A, Gaba DM: An overview of patient safety climate in the VA.

    Health Serv Res 2008, 43:1263-1284. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL

  36. Singer SJ, Gaba DM, Falwell A, Lin S, Hayes J, Baker L: Patient safety climate in 92 US hospitals: differences by work area and discipline.

    Med Care 2009, 47:23-31. PubMed Abstract | Publisher Full Text OpenURL

  37. Smits M, Wagner C, Spreeuwenberg P, van der Wal G, Groenewegen PP: Measuring patient safety culture: an assessment of the clustering of responses at unit level and hospital level.

    Qual Saf Health Care 2009, 18:292-296. PubMed Abstract | Publisher Full Text OpenURL

  38. Zohar D, Livne Y, Tenne-Gazit O, Admi H, Donchin Y: Healthcare climate: A framework for measuring and improving patient safety.

    Crit Care Med 2007, 35:1312-1317. PubMed Abstract | Publisher Full Text OpenURL

  39. Linsky AS: Stimulating responses to mailed questionnaires: a review.

    Public Opin Q 1975, 39:82-101. Publisher Full Text OpenURL

Pre-publication history

The pre-publication history for this paper can be accessed here: