Open Access Highly Accessed Open Badges Research article

Antifungal and cytotoxicity activities of the fresh xylem sap of Hymenaea courbaril L. and its major constituent fisetin

Maysa Paula da Costa1, Marize Campos Valadares Bozinis3, Wanessa Machado Andrade3, Carolina Rodrigues Costa1, Alessandro Lopes da Silva2, Cecília Maria Alves de Oliveira2, Lucília Kato2, Orionalda de Fátima Lisboa Fernandes1, Lúcia Kioko Hasimoto Souza1 and Maria do Rosário Rodrigues Silva1*

  • * Corresponding author: Maria do Rosário Rodrigues Silva

Author Affiliations

1 Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235 - s/n - Setor Universitário, CEP: 74605050 Goiânia, Goiás, Brazil

2 Instituto de Química, Universidade Federal de Goiás, Campus II - Samambaia, Itatiaia, CEP: 74001-970 Goiânia, GO, Brazil

3 Faculdade de Farmácia, Universidade Federal de Goiás, Praça Universitária, Esq, c/1a Avenida, Qd 62, Setor Universitário, CEP: 74605-220 Goiania, GO, Brazil

For all author emails, please log on.

BMC Complementary and Alternative Medicine 2014, 14:245  doi:10.1186/1472-6882-14-245

Published: 16 July 2014



The great potential of plants as Hymenaea courbaril L (jatoba) has not yet been throughly explored scientifically and therefore it is very important to investigate their pharmacological and toxicological activities to establish their real efficacy and safety. This study investigated the cytotoxicity of xylem sap of Hymenaea courbaril L and its bioactivity against the fungi Cryptococcus neoformans species complex and dermatophytes.


The fresh xylem sap of H. courbaril was filtered resulting in an insoluble brown color precipitate and was identified as fisetin. In the filtrate was identified the mixture of fisetinediol, fustin, 3-O-methyl-2,3-trans-fustin and taxifolin, which were evaluated by broth microdilution antifungal susceptibility testing against C. neoformans species complex and dermatophytes. The fresh xylem sap and fisetin were screened for cytotoxicity against the 3T3-A31 cells of Balb/c using neutral red uptake (NRU) assay.


The fresh xylem sap and the fisetin showed higher in vitro activity than the filtrate. The xylem sap of H. courbaril inhibited the growth of dermatophytes and of C. neoformans with minimal inhibition concentration (MIC) < 256 μg/mL, while the fisetin showed MIC < 128 μg/mL for these fungi. Fisetin showed lower toxicity (IC50 = 158 μg/mL) than the fresh xylem sap (IC50 = 109 μg/mL).


Naturally occurring fisetin can provide excellent starting points for clinical application and can certainly represent a therapeutic potential against fungal infections, because it showed in vitro antifungal activity and low toxicity on animal cells.

Antifungal activity; Cytotoxicity; Hymenaea courbaril