Email updates

Keep up to date with the latest news and content from BMC Complementary and Alternative Medicine and BioMed Central.

Open Access Highly Accessed Research article

Samsoeum, a traditional herbal medicine, elicits apoptotic and autophagic cell death by inhibiting Akt/mTOR and activating the JNK pathway in cancer cells

Aeyung Kim, Nam-Hui Yim and Jin Yeul Ma*

Author Affiliations

Korean Medicine (KM)-Based Herbal Drug Research Group, Korea Institute of Oriental Medicine (KIOM), 483 Expo-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea

For all author emails, please log on.

BMC Complementary and Alternative Medicine 2013, 13:233  doi:10.1186/1472-6882-13-233

Published: 23 September 2013

Abstract

Background

Samsoeum (SSE), a traditional herbal formula, has been widely used to treat cough, fever, congestion, and emesis for centuries. Recent studies have demonstrated that SSE retains potent pharmacological efficiency in anti-allergic and anti-inflammatory reactions. However, the anti-cancer activity of SSE and its underlying mechanisms have not been studied. Thus, the present study was designed to determine the effect of SSE on cell death and elucidate its detailed mechanism.

Methods

Following SSE treatment, cell growth and cell death were measured using an MTT assay and trypan blue exclusion assay, respectively. Cell cycle arrest and YO-PRO-1 uptake were assayed using flow cytometry, and LC3 redistribution was observed using confocal microscope. The mechanisms of anti-cancer effect of SSE were investigated through western blot analysis.

Results

We initially found that SSE caused dose- and time-dependent cell death in cancer cells but not in normal primary hepatocytes. In addition, during early SSE treatment (6–12 h), cells were arrested in G2/M phase concomitant with up-regulation of p21 and p27 and down-regulation of cyclin D1 and cyclin B1, followed by an increase in apoptotic YO-PRO-1 (+) cells. SSE also induced autophagy via up-regulation of Beclin-1 expression, conversion of microtubule-associated protein light chain 3 (LC3) I to LC3-II, and re-distribution of LC3, indicating autophagosome formation. Moreover, the level of B-cell lymphoma 2 (Bcl-2), which is critical for cross-talk between apoptosis and autophagy, was significantly reduced in SSE-treated cells. Phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) was increased, followed by suppression of the protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathway, and phosphorylation of mitogen-activated protein kinases (MAPKs) in response to SSE treatment. In particular, among MAPKs inhibitors, only the c-Jun N-terminal kinase (JNK)-specific inhibitor SP600125 nearly blocked SSE-induced increases in Beclin-1, LC3-II, and Bax expression and decreases in Bcl-2 expression, indicating that JNK activation plays critical role in cell death caused by SSE.

Conclusions

These findings suggest that SSE efficiently induces cancer cell death via apoptosis as well as autophagy through modification of the Akt/mTOR and JNK signaling pathways. SSE may be as a potent traditional herbal medicine for treating malignancies.

Keywords:
Samsoeum; Apoptosis; Autophagy; Cell cycle arrest; Akt/mTOR; JNK