Email updates

Keep up to date with the latest news and content from BMC Complementary and Alternative Medicine and BioMed Central.

Open Access Research article

Inhibition of advanced glycation end products by red grape skin extract and its antioxidant activity

Nattha Jariyapamornkoon1, Sirintorn Yibchok-anun12 and Sirichai Adisakwattana23*

Author affiliations

1 Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand

2 Research Group of Herbal Medicine for Prevention and Therapeutic of Metabolic diseases, Chulalongkorn University, Bangkok, Thailand

3 Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand

For all author emails, please log on.

Citation and License

BMC Complementary and Alternative Medicine 2013, 13:171  doi:10.1186/1472-6882-13-171

Published: 12 July 2013

Abstract

Background

The objective of the present study was to determine the phytochemical content and the protective effect of red grape skin extract (RGSE) against fructose-mediated protein oxidation. In addition, RGSE was screened for its potential as an antioxidant using various in vitro models.

Methods

Antioxidant activity was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical scavenging activity, superoxide radical scavenging activity, trolox equivalent antioxidant capacity, ferric reducing antioxidant power (FRAP), ferrous ion chelating power. The total phenols content was measured by Folin–Ciocalteu assay, the flavonoids content by the AlCl3 colorimetric method. Antiglycation activity was determined using the formation of AGE fluorescence intensity, Nϵ-(carboxymethyl)lysine, and the level of fructosamine. The protein oxidation was examined using the level of protein carbonyl content and thiol group.

Results

The results showed that the content of total phenolics, flavonoids and total anthocyanins in RGSE was 246.3 ± 0.9 mg gallic acid equivalent/g dried extract, 215.9 ± 1.3 mg catechin equivalent/g dried extract, and 36.7 ± 0.8 mg cyanidin-3-glucoside equivalent/g dried extract, respectively. In the DPPH radical scavenging activity, hydroxyl radical scavenging activity, and superoxide radical scavenging activity, RGSE had the IC50 values of 0.03 ± 0.01 mg/ml, 5.40 ± 0.01 mg/ml, and 0.58 ± 0.01 mg/ml, respectively. In addition, RGSE had trolox equivalent antioxidant capacity assay (395.65 ± 1.61 mg trolox equivalent/g dried extract), ferric reducing antioxidant power (114.24 ± 0.03 mM FeSO4/g dried extract), and ferrous ion chelating power (3,474.05 ± 5.55 mg EDTA/g dried extract), respectively. The results showed that RGSE at different concentrations (0.031–0.500 mg/ml) has significantly inhibited the formation of AGEs in terms of the fluorescence intensity of glycated BSA during 4 weeks of study. The RGSE markedly decreased the level of fructosamine, which is directly associated with the reduction of AGE formation and Nϵ-(carboxymethyl)lysine (CML). The results demonstrated the significant effect of RGSE on preventing protein oxidative damages, including effects on the thiol and protein carbonyl oxidation.

Conclusions

The present study revealed that RGSE would exert beneficial effects by virtue of its antioxidants and antiglycation. The findings could provide a new insight into the naturally occurring antiglycation properties of RGSE for preventing AGE-mediated diabetic complication.

Keywords:
Grape skin; Anthocyanin; Antioxidant; Antiglycation