Email updates

Keep up to date with the latest news and content from BMC Oral Health and BioMed Central.

Open Access Highly Accessed Research article

Comparison of the shaping ability of GT® Series X, Twisted Files and AlphaKite rotary nickel-titanium systems in simulated canals

Raidan Ba-Hattab*, Anne-Kathrin Pröhl, Hermann Lang and Dieter Pahncke

Author Affiliations

Department of Operative Dentistry and Periodontology, Dental School University of Rostock, Strempelstr 13, 18057 Rostock, Germany

For all author emails, please log on.

BMC Oral Health 2013, 13:72  doi:10.1186/1472-6831-13-72

Published: 17 December 2013

Abstract

Background

Efforts to improve the performance of rotary NiTi instruments by enhancing the properties of NiTi alloy, or their manufacturing processes rather than changes in instrument geometries have been reported. The aim of this study was to compare in-vitro the shaping ability of three different rotary nickel-titanium instruments produced by different manufacturing methods.

Methods

Thirty simulated root canals with a curvature of 35˚ in resin blocks were prepared with three different rotary NiTi systems: AK- AlphaKite (Gebr. Brasseler, Germany), GTX- GT® Series X (Dentsply, Germany) and TF- Twisted Files (SybronEndo, USA).

The canals were prepared according to the manufacturers’ instructions. Pre- and post-instrumentation images were recorded and assessment of canal curvature modifications was carried out with an image analysis program (GSA, Germany).

The preparation time and incidence of procedural errors were recorded. Instruments were evaluated under a microscope with 15 × magnifications (Carl Zeiss OPMI Pro Ergo, Germany) for signs of deformation. The Data were statistically analyzed using SPSS (Wilcoxon and Mann–Whitney U-tests, at a confidence interval of 95%).

Results

Less canal transportation was produced by TF apically, although the difference among the groups was not statistically significant. GTX removed the greatest amount of resin from the middle and coronal parts of the canal and the difference among the groups was statistically significant (p < 0.05). The shortest preparation time was registered with TF (444 s) and the longest with GTX (714 s), the difference among the groups was statistically significant (p < 0.05). During the preparation of the canals no instrument fractured. Eleven instruments of TF and one of AK were deformed.

Conclusion

Under the conditions of this study, all rotary NiTi instruments maintained the working length and prepared a well-shaped root canal. The least canal transportation was produced by AK. GTX displayed the greatest cutting efficiency. TF prepared the canals faster than the other two systems.

Keywords:
AlphaKite; Canal shaping; GT® Series X; Ni-Ti instruments; Simulated canals; Twisted files