Email updates

Keep up to date with the latest news and content from BMC Ecology and BioMed Central.

Open Access Highly Accessed Research article

Life history traits in selfing versus outcrossing annuals: exploring the 'time-limitation' hypothesis for the fitness benefit of self-pollination

Rebecca Snell and Lonnie W Aarssen*

Author Affiliations

Dept of Biology, Queen's Univ., Kingston, ON, K7L 3N6, Canada

For all author emails, please log on.

BMC Ecology 2005, 5:2  doi:10.1186/1472-6785-5-2

Published: 11 February 2005



Most self-pollinating plants are annuals. According to the 'time-limitation' hypothesis, this association between selfing and the annual life cycle has evolved as a consequence of strong r-selection, involving severe time-limitation for completing the life cycle. Under this model, selection from frequent density-independent mortality in ephemeral habitats minimizes time to flower maturation, with selfing as a trade-off, and / or selection minimizes the time between flower maturation and ovule fertilization, in which case selfing has a direct fitness benefit. Predictions arising from this hypothesis were evaluated using phylogenetically-independent contrasts of several life history traits in predominantly selfing versus outcrossing annuals from a data base of 118 species distributed across 14 families. Data for life history traits specifically related to maturation and pollination times were obtained by monitoring the start and completion of different stages of reproductive development in a greenhouse study of selfing and outcrossing annuals from an unbiased sample of 25 species involving five pair-wise family comparisons and four pair-wise genus comparisons.


Selfing annuals in general had significantly shorter plant heights, smaller flowers, shorter bud development times, shorter flower longevity and smaller seed sizes compared with their outcrossing annual relatives. Age at first flower did not differ significantly between selfing and outcrossing annuals.


This is the first multi-species study to report these general life-history differences between selfers and outcrossers among annuals exclusively. The results are all explained more parsimoniously by selection associated with time-limitation than by selection associated with pollinator/mate limitation. The shorter bud development time reported here for selfing annuals is predicted explicitly by the time-limitation hypothesis for the fitness benefit of selfing (and not by the alternative 'reproductive assurance' hypothesis associated with pollinator/mate limitation). Support for the time-limitation hypothesis is also evident from published surveys: whereas selfers and outcrossers are about equally represented among annual species as a whole, selfers occur in much higher frequencies among the annual species found in two of the most severely time-limited habitats where flowering plants grow – deserts and cultivated habitats.