Email updates

Keep up to date with the latest news and content from BMC Ecology and BioMed Central.

Open Access Highly Accessed Research article

Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

Rongling Wu123*, James E Grissom2, Steven E McKeand2 and David M O'Malley2

Author Affiliations

1 School of Life Sciences, Zhejiang Forestry University, Lin'an, Zhejiang 311300, People's Republic of China

2 Department of Forestry, North Carolina State University, Raleigh, NC 27695, USA

3 Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA

For all author emails, please log on.

BMC Ecology 2004, 4:14  doi:10.1186/1472-6785-4-14

Published: 7 September 2004

Abstract

Background

The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old) of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response.

Results

The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive.

Conclusions

Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.