Email updates

Keep up to date with the latest news and content from BMC Chemical Biology and BioMed Central.

Open Access Research article

The effect of amino acid deletions and substitutions in the longest loop of GFP

Gabriela Flores-Ramírez, Manuel Rivera, Alfredo Morales-Pablos, Joel Osuna, Xavier Soberón and Paul Gaytán*

Author affiliations

Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México

For all author emails, please log on.

Citation and License

BMC Chemical Biology 2007, 7:1  doi:10.1186/1472-6769-7-1

Published: 26 June 2007

Abstract

Background

The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP) from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region.

Results

In this study, the region I129-L142 of superglo GFP (sgGFP), corresponding to the longest loop of the protein and located far away from the central chromophore, was subjected to a random amino acid deletion approach, employing an in-house recently developed mutagenesis method termed Codon-Based Random Deletion (COBARDE). Only two mutants out of 16384 possible variant proteins retained fluorescence: sgGFP-Δ I129 and sgGFP-Δ D130. Interestingly, both mutants were thermosensitive and at 30°C sgGFP-Δ D130 was more fluorescent than the parent protein. In contrast with deletions, substitutions of single amino acids from residues F131 to L142 were well tolerated. The substitution analysis revealed a particular importance of residues F131, G135, I137, L138, H140 and L142 for the stability of the protein.

Conclusion

The behavior of GFP variants with both amino acid deletions and substitutions demonstrate that this loop is playing an important structural role in GFP folding. Some of the amino acids which tolerated any substitution but no deletion are simply acting as "spacers" to localize important residues in the protein structure.