Email updates

Keep up to date with the latest news and content from BMC Biotechnology and BioMed Central.

Open Access Research article

Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

Chung-Da Yang1, Jia-Teh Liao3, Chen-Yen Lai1, Ming-Hwa Jong4, Chi-Ming Liang5, Yeou-Liang Lin4, Na-Sheng Lin12*, Yau-Heiu Hsu3* and Shu-Mei Liang13*

Author Affiliations

1 Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan

2 Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan

3 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan

4 National Institute for Animal Health, Taipei, Taiwan

5 National Health Research Institutes, Zhunan, Taiwan

For all author emails, please log on.

BMC Biotechnology 2007, 7:62  doi:10.1186/1472-6750-7-62

Published: 27 September 2007

Abstract

Background

Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV), that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects.

Methods

We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s) of the capsid protein VP1 of foot-and-mouth disease virus (FMDV). The recombinant BaMV plasmid (pBVP1) was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164) of FMDV VP1.

Results

The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge.

Conclusion

Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.