Reasearch Awards nomination

Email updates

Keep up to date with the latest news and content from BMC Musculoskeletal Disorders and BioMed Central.

Open Access Research article

Can pathoanatomical pathways of degeneration in lumbar motion segments be identified by clustering MRI findings

Rikke K Jensen12*, Tue S Jensen12, Per Kjaer13 and Peter Kent12

Author Affiliations

1 Research Department, Spine Centre of Southern Denmark, Hospital Lillebaelt, Middelfart, Denmark

2 Institute of Regional Health Services Research, University of Southern Denmark, Middelfart, Denmark

3 Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark

For all author emails, please log on.

BMC Musculoskeletal Disorders 2013, 14:198  doi:10.1186/1471-2474-14-198

Published: 1 July 2013

Abstract

Background

Magnetic Resonance Imaging (MRI) is the gold standard for detailed visualisation of spinal pathological and degenerative processes, but the prevailing view is that such imaging findings have little or no clinical relevance for low back pain. This is because these findings appear to have little association with treatment effects in clinical populations, and mostly a weak association with the presence of pain in the general population.

However, almost all research into these associations is based on the examination of individual MRI findings, despite its being very common for multiple MRI findings to coexist. Therefore, this proof-of-concept study investigated the capacity of a multivariable statistical method to identify clusters of MRI findings and for those clusters to be grouped into pathways of vertebral degeneration.

Methods

This study is a secondary analysis of data from 631 patients, from an outpatient spine clinic, who had been screened for inclusion in a randomised controlled trial. The available data created a total sample pool of 3,155 vertebral motion segments. The mean age of the cohort was 42 years (SD 10.8, range 18–73) and 54% were women.

MRI images were quantitatively coded by an experienced musculoskeletal research radiologist using a detailed and standardised research MRI evaluation protocol that has demonstrated high reproducibility. Comprehensive MRI findings descriptive of the disco-vertebral component of lumbar vertebrae were clustered using Latent Class Analysis. Two pairs of researchers, each containing an experienced MRI researcher, then independently categorised the clusters into hypothetical pathoanatomic pathways based on the known histological changes of discovertebral degeneration.

Results

Twelve clusters of MRI findings were identified, described and grouped into five different hypothetical pathways of degeneration that appear to have face validity.

Conclusions

This study has shown that Latent Class Analysis can be used to identify clusters of MRI findings from people with LBP and that those clusters can be grouped into degenerative pathways that are biologically plausible. If these clusters of MRI findings are reproducible in other datasets of similar patients, they may form a stable platform to investigate the relationship between degenerative pathways and clinically important characteristics such as pain and activity limitation.

Keywords:
Low back pain; Disc degeneration; Magnetic Resonance Imaging; Subgroup; Latent Class Analysis