Email updates

Keep up to date with the latest news and content from BMC Pulmonary Medicine and BioMed Central.

Open Access Highly Accessed Review

Possible molecular mechanisms linking air pollution and asthma in children

Susanna Esposito*, Rossana Tenconi, Mara Lelii, Valentina Preti, Erica Nazzari, Silvia Consolo and Maria Francesca Patria

Author Affiliations

Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milano, Italy

For all author emails, please log on.

BMC Pulmonary Medicine 2014, 14:31  doi:10.1186/1471-2466-14-31

Published: 1 March 2014

Abstract

Background

Air pollution has many effects on the health of both adults and children, but children’s vulnerability is unique. The aim of this review is to discuss the possible molecular mechanisms linking air pollution and asthma in children, also taking into account their genetic and epigenetic characteristics.

Results

Air pollutants appear able to induce airway inflammation and increase asthma morbidity in children. A better definition of mechanisms related to pollution-induced airway inflammation in asthmatic children is needed in order to find new clinical and therapeutic strategies for preventing the exacerbation of asthma. Moreover, reducing pollution-induced oxidative stress and consequent lung injury could decrease children’s susceptibility to air pollution. This would be extremely useful not only for the asthmatic children who seem to have a genetic susceptibility to oxidative stress, but also for the healthy population. In addition, epigenetics seems to have a role in the lung damage induced by air pollution. Finally, a number of epidemiological studies have demonstrated that exposure to common air pollutants plays a role in the susceptibility to, and severity of respiratory infections.

Conclusions

Air pollution has many negative effects on pediatric health and it is recognised as a serious health hazard. There seems to be an association of air pollution with an increased risk of asthma exacerbations and acute respiratory infections. However, further studies are needed in order to clarify the specific mechanism of action of different air pollutants, identify genetic polymorphisms that modify airway responses to pollution, and investigate the effectiveness of new preventive and/or therapeutic approaches for subjects with low antioxidant enzyme levels. Moreover, as that epigenetic changes are inheritable during cell division and may be transmitted to subsequent generations, it is very important to clarify the role of epigenetics in the relationship between air pollution and lung disease in asthmatic and healthy children.

Keywords:
Air pollution; Asthma; Lung disease; Particulate matter; Pediatric pulmonology; Respiratory tract infection