Email updates

Keep up to date with the latest news and content from BMC Public Health and BioMed Central.

Open Access Open Badges Research article

Comparing estimates of influenza-associated hospitalization and death among adults with congestive heart failure based on how influenza season is defined

Carolyn Sandoval, Stephen D Walter, Paul Krueger and Mark B Loeb*

Author Affiliations

Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada

For all author emails, please log on.

BMC Public Health 2008, 8:59  doi:10.1186/1471-2458-8-59

Published: 13 February 2008



There is little consensus about how the influenza season should be defined in studies that assess influenza-attributable risk. The objective of this study was to compare estimates of influenza-associated risk in a defined clinical population using four different methods of defining the influenza season.


Using the Studies of Left Ventricular Dysfunction (SOLVD) clinical database and national influenza surveillance data from 1986–87 to 1990–91, four definitions were used to assess influenza-associated risk: (a) three-week moving average of positive influenza isolates is at least 5%, (b) three-week moving average of positive influenza isolates is at least 10%, (c) first and last positive influenza isolate are identified, and (d) 5% of total number of positive isolates for the season are obtained. The clinical data were from adults aged 21 to 80 with physician-diagnosed congestive heart failure. All-cause hospitalization and all-cause mortality during the influenza seasons and non-influenza seasons were compared using four definitions of the influenza season. Incidence analyses and Cox regression were used to assess the effect of exposure to influenza season on all-cause hospitalization and death using all four definitions.


There was a higher risk of hospitalization associated with the influenza season, regardless of how the start and stop of the influenza season was defined. The adjusted risk of hospitalization was 8 to 10 percent higher during the influenza season compared to the non-influenza season when the different definitions were used. However, exposure to influenza was not consistently associated with higher risk of death when all definitions were used. When the 5% moving average and first/last positive isolate definitions were used, exposure to influenza was associated with a higher risk of death compared to non-exposure in this clinical population (adjusted hazard ratios [HR], 1.16; 95% confidence interval [CI], 1.04 to 1.29 and adjusted HR, 1.19; 95% CI, 1.06 to 1.33, respectively).


Estimates of influenza-attributable risk may vary depending on how influenza season is defined and the outcome being assessed.