Email updates

Keep up to date with the latest news and content from BMC Pediatrics and BioMed Central.

Open Access Research article

In-line filtration minimizes organ dysfunction: New aspects from a prospective, randomized, controlled trial

Martin Boehne, Thomas Jack*, Harald Köditz, Kathrin Seidemann, Florian Schmidt, Michaela Abura, Harald Bertram and Michael Sasse

Author Affiliations

Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany

For all author emails, please log on.

BMC Pediatrics 2013, 13:21  doi:10.1186/1471-2431-13-21

Published: 6 February 2013

Abstract

Background

Infused particles induce thrombogenesis, impair microcirculation and modulate immune response. We have previously shown in critically ill children, that particle-retentive in-line filtration reduced the overall complication rate of severe events, length of stay and duration of mechanical ventilation. We now evaluated the influence of in-line filtration on different organ function and thereby elucidated the potential underlying pathophysiological effects of particle infusion.

Methods

In this single-centre, prospective, randomized controlled trial 807 critically ill children were assigned to either control (n = 406) or filter group (n = 401), the latter receiving in-line filtration for complete infusion therapy. Both groups were compared regarding the differences of incidence rates and its 95% confidence interval (CI) of different organ dysfunction as defined by the International Pediatric Sepsis Consensus Conference 2005.

Results

The incidence rates of respiratory (−5.06%; 95% CI, −9.52 to −0.59%), renal (−3.87%; 95% CI, −7.58 to −0.15%) and hematologic (−3.89%; 95% CI, −7.26 to −0.51%) dysfunction were decreased in the filter group. No difference was demonstrated for the occurrence rates of cardiovascular, hepatic, or neurologic dysfunction between both groups.

Conclusions

In-line filtration has beneficial effects on the preservation of hematologic, renal and respiratory function in critically ill patients. The presented clinical data further support our hypothesis regarding potential harmful effects of particles. In critically ill patients infused particles may lead to further deterioration of the microcirculation, induce a systemic hypercoagulability and inflammation with consecutive negative effects on organ function.

Trial registration

ClinicalTrials.gov number; NCT00209768

Keywords:
In-line filtration; Intensive care; Particle; Inflammation; Children; Organ dysfunction