Email updates

Keep up to date with the latest news and content from BMC Ophthalmology and BioMed Central.

Open Access Research article

A functional profile of gene expression in ARPE-19 cells

Rajesh K Sharma, William E Orr, Allyson D Schmitt and Dianna A Johnson*

Author Affiliations

Department of Ophthalmology and Hamilton Eye Institute, University of Tennessee Health Science Center, 930 Madison Ave, Memphis, TN 38163, USA

For all author emails, please log on.

BMC Ophthalmology 2005, 5:25  doi:10.1186/1471-2415-5-25

Published: 1 November 2005

Abstract

Background

Retinal pigment epithelium cells play an important role in the pathogenesis of age related macular degeneration. Their morphological, molecular and functional phenotype changes in response to various stresses. Functional profiling of genes can provide useful information about the physiological state of cells and how this state changes in response to disease or treatment. In this study, we have constructed a functional profile of the genes expressed by the ARPE-19 cell line of retinal pigment epithelium.

Methods

Using Affymetrix MAS 5.0 microarray analysis, genes expressed by ARPE-19 cells were identified. Using GeneChip® annotations, these genes were classified according to their known functions to generate a functional gene expression profile.

Results

We have determined that of approximately 19,044 unique gene sequences represented on the HG-U133A GeneChip® , 6,438 were expressed in ARPE-19 cells irrespective of the substrate on which they were grown (plastic, fibronectin, collagen, or Matrigel). Rather than focus our subsequent analysis on the identity or level of expression of each individual gene in this large data set, we examined the number of genes expressed within 130 functional categories. These categories were selected from a library of HG-U133A GeneChip® annotations linked to the Affymetrix MAS 5.0 data sets. Using this functional classification scheme, we were able to categorize about 70% of the expressed genes and condense the original data set of over 6,000 data points into a format with 130 data points. The resulting ARPE-19 Functional Gene Expression Profile is displayed as a percentage of ARPE-19-expressed genes.

Conclusion

The Profile can readily be compared with equivalent microarray data from other appropriate samples in order to highlight cell-specific attributes or treatment-induced changes in gene expression. The usefulness of these analyses is based on the assumption that the numbers of genes expressed within a functional category provide an indicator of the overall level of activity within that particular functional pathway.