Email updates

Keep up to date with the latest news and content from BMC Cancer and BioMed Central.

Open Access Research article

Fenretinide-induced caspase-8 activation and apoptosis in an established model of metastatic neuroblastoma

Gilda Raguénez1*, Annick Mühlethaler-Mottet2, Roland Meier24, Caroline Duros1, Jean Bénard13 and Nicole Gross2

Author Affiliations

1 Centre National de Recherche Scientifique, Unité Mixte de Recherche 8126, Institut Fédératif de Recherche 54, Institut Gustave Roussy, Villejuif, France

2 University Hospital CHUV, Pediatric Oncology Research, Department of Pediatrics, Lausanne, Switzerland

3 Medical Biology and Pathology: Department, Institut Gustave Roussy, Villejuif, France

4 Lawrence Berkeley National Lab, 1 Cyclotron Rd., MS-977-225A, University of California, Berkeley, CA 94720, USA

For all author emails, please log on.

BMC Cancer 2009, 9:97  doi:10.1186/1471-2407-9-97

Published: 30 March 2009

Abstract

Background

Resistance of high-risk metastatic neuroblastoma (HR-NB) to high dose chemotherapy (HD-CT) raises a major therapeutic challenge in pediatric oncology. Patients are treated by maintenance CT. For some patients, an adjuvant retinoid therapy is proposed, such as the synthetic retinoid fenretinide (4-HPR), an apoptotic inducer. Recent studies demonstrated that NB metastasis process is enhanced by the loss of caspase-8 involved in the Integrin-Mediated Death (IMD) process. As the role of caspase-8 appears to be critical in preventing metastasis, we aimed at studying the effect of 4-HPR on caspase-8 expression in metastatic neuroblasts.

Methods

We used the human IGR-N-91 MYCN-amplified NB experimental model, able to disseminate in vivo from the primary nude mouse tumor xenograft (PTX) into myocardium (Myoc) and bone marrow (BM) of the animal. NB cell lines, i.e., IGR-N-91 and SH-EP, were treated with various doses of Fenretinide (4-HPR), then cytotoxicity was analyzed by MTS proliferation assay, apoptosis by the propidium staining method, gene or protein expressions by RT-PCR and immunoblotting and caspases activity by colorimetric protease assays.

Results

The IGR-N-91 parental cells do not express detectable caspase-8. However the PTX cells established from the primary tumor in the mouse, are caspase-8 positive. In contrast, metastatic BM and Myoc cells show a clear down-regulation of the caspase-8 expression. In parallel, the caspases -3, -9, -10, Bcl-2, or Bax expressions were unchanged. Our data show that in BM, compared to PTX cells, 4-HPR up-regulates caspase-8 expression that parallels a higher sensitivity to apoptotic cell death. Stable caspase-8-silenced SH-EP cells appear more resistant to 4-HPR-induced cell death compared to control SH-EP cells. Moreover, 4-HPR synergizes with drugs since apoptosis is restored in VP16- or TRAIL-resistant-BM cells. These results demonstrate that 4-HPR in up-regulating caspase-8 expression, restores and induces apoptotic cell death in metastatic neuroblasts through caspase-8 activation.

Conclusion

This study provides basic clues for using fenretinide in clinical treatment of HR-NB patients. Moreover, since 4-HPR induces cell death in caspase-8 negative NB, it also challenges the concept of including 4-HPR in the induction of CT of these patients.