Email updates

Keep up to date with the latest news and content from BMC Cancer and BioMed Central.

Open Access Research article

Bithionol inhibits ovarian cancer cell growth In Vitro - studies on mechanism(s) of action

Vijayalakshmi N Ayyagari and Laurent Brard*

Author Affiliations

Division of Gynecologic Oncology; Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, USA

For all author emails, please log on.

BMC Cancer 2014, 14:61  doi:10.1186/1471-2407-14-61

Published: 4 February 2014

Abstract

Background

Drug resistance is a cause of ovarian cancer recurrence and low overall survival rates. There is a need for more effective treatment approaches because the development of new drug is expensive and time consuming. Alternatively, the concept of ‘drug repurposing’ is promising. We focused on Bithionol (BT), a clinically approved anti-parasitic drug as an anti-ovarian cancer drug. BT has previously been shown to inhibit solid tumor growth in several preclinical cancer models. A better understanding of the anti-tumor effects and mechanism(s) of action of BT in ovarian cancer cells is essential for further exploring its therapeutic potential against ovarian cancer.

Methods

The cytotoxic effects of BT against a panel of ovarian cancer cell lines were determined by Presto Blue cell viability assay. Markers of apoptosis such as caspases 3/7, cPARP induction, nuclear condensation and mitochondrial transmembrane depolarization were assessed using microscopic, FACS and immunoblotting methods. Mechanism(s) of action of BT such as cell cycle arrest, reactive oxygen species (ROS) generation, autotaxin (ATX) inhibition and effects on MAPK and NF-kB signalling were determined by FACS analysis, immunoblotting and colorimetric methods.

Results

BT caused dose dependent cytotoxicity against all ovarian cancer cell lines tested with IC50 values ranging from 19 μM – 60 μM. Cisplatin-resistant variants of A2780 and IGROV-1 have shown almost similar IC50 values compared to their sensitive counterparts. Apoptotic cell death was shown by expression of caspases 3/7, cPARP, loss of mitochondrial potential, nuclear condensation, and up-regulation of p38 and reduced expression of pAkt, pNF-κB, pIκBα, XIAP, bcl-2 and bcl-xl. BT treatment resulted in cell cycle arrest at G1/M phase and increased ROS generation. Treatment with ascorbic acid resulted in partial restoration of cell viability. In addition, dose and time dependent inhibition of ATX was observed.

Conclusions

BT exhibits cytotoxic effects on various ovarian cancer cell lines regardless of their sensitivities to cisplatin. Cell death appears to be via caspases mediated apoptosis. The mechanisms of action appear to be partly via cell cycle arrest, ROS generation and inhibition of ATX. The present study provides preclinical data suggesting a potential therapeutic role for BT against recurrent ovarian cancer.

Keywords:
Bithionol; Ovarian cancer cell lines; Apoptosis; Reactive oxygen species; Autotaxin