Email updates

Keep up to date with the latest news and content from BMC Cancer and BioMed Central.

Open Access Highly Accessed Research article

Biomarkers for antitumor activity of bevacizumab in gastric cancer models

Yoriko Yamashita-Kashima, Kaori Fujimoto-Ouchi*, Keigo Yorozu, Mitsue Kurasawa, Mieko Yanagisawa, Hideyuki Yasuno and Kazushige Mori

Author Affiliations

Product Research Department, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, Japan 247-8530

For all author emails, please log on.

BMC Cancer 2012, 12:37  doi:10.1186/1471-2407-12-37

Published: 25 January 2012

Abstract

Background

Bevacizumab is a humanized monoclonal antibody to human vascular endothelial cell growth factor (VEGF) and has been used for many types of cancers such as colorectal cancer, non-small cell lung cancer, breast cancer, and glioblastoma. Bevacizumab might be effective against gastric cancer, because VEGF has been reported to be involved in the development of gastric cancer as well as other cancers. On the other hand, there are no established biomarkers to predict the bevacizumab efficacy in spite of clinical needs. Therefore, we tried to identify the predictive markers for efficacy of bevacizumab in gastric cancer patients by using bevacizumab-sensitive and insensitive tumor models.

Methods

Nine human gastric and two colorectal cancer mouse xenografts were examined for their sensitivity to bevacizumab. We examined expression levels of angiogenic factors by ELISA, bioactivity of VEGF by phosphorylation of VEGFR2 in HUVEC after addition of tumor homogenate, tumor microvessel density by CD31-immunostaining, and polymorphisms of the VEGF gene by HybriProbe™ assay.

Results

Of the 9 human gastric cancer xenograft models used, GXF97, MKN-45, MKN-28, 4-1ST, SC-08-JCK, and SC-09-JCK were bevacizumab-sensitive, whereas SCH, SC-10-JCK, and NCI-N87 were insensitive. The sensitivity of the gastric cancer model to bevacizumab was not related to histological type or HER2 status. All tumors with high levels of VEGF were bevacizumab-sensitive except for one, SC-10-JCK, which had high levels of VEGF. The reason for the refractoriness was non-bioactivity on the phosphorylation of VEGFR2 and micro-vessel formation of VEGF, but was not explained by the VEGF allele or VEGF165b. We also examined the expression levels of other angiogenic factors in the 11 gastrointestinal tumor tissues. In the refractory models including SC-10-JCK, tumor levels of another angiogenic factor, bFGF, were relatively high. The VEGF/bFGF ratio correlated more closely with sensitivity to bevacizumab than with the VEGF level.

Conclusions

VEGF levels and VEGF/bFGF ratios in tumors were related to bevacizumab sensitivity of the xenografts tested. Further clinical investigation into useful predictive markers for bevacizumab sensitivity is warranted.