Email updates

Keep up to date with the latest news and content from BMC Cancer and BioMed Central.

Open Access Highly Accessed Research article

Methylenetetrahydrofolate reductase polymorphisms and interaction with smoking and alcohol consumption in lung cancer risk: a case-control study in a Japanese population

Chikako Kiyohara1*, Takahiko Horiuchi2, Koichi Takayama3 and Yoichi Nakanishi3

Author Affiliations

1 Department of Preventive Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan

2 Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan

3 Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

For all author emails, please log on.

BMC Cancer 2011, 11:459  doi:10.1186/1471-2407-11-459

Published: 25 October 2011

Abstract

Background

Cigarette smoking is an established risk factor of lung cancer development while the current epidemiological evidence is suggestive of an increased lung cancer risk associated with alcohol consumption. Dietary folate, which is present in a wide range of fresh fruits and vegetables, may be a micronutrient that has a beneficial impact on lung carcinogenesis. Methylenetetrahydrofolate reductase (MTHFR) plays a crucial role in regulating folate metabolism, which affects both DNA synthesis/repair and methylation. We examined if smoking or alcohol consumption modify associations between MTHFR polymorphisms and lung cancer risk.

Methods

We evaluated the role of the MTHFR C677T (rs1801133) and A1298C (rs1801131) polymorphisms in a case-control study comprised of 462 lung cancer cases and 379 controls in a Japanese population. Logistic regression was used to assess the adjusted odds ratios (OR) and 95% confidence intervals (95% CI).

Results

The TT genotype of the C677T polymorphism was significantly associated with an increased risk of lung cancer (OR = 2.27, 95% CI = 1.42 - 3.62, P < 0.01) while the A1298C polymorphism was not associated with lung cancer risk. The minor alleles of both polymorphisms behaved in a recessive fashion. The highest risks were seen for 677TT-carriers with a history of smoking or excessive drinking (OR = 6.16, 95% CI = 3.48 - 10.9 for smoking; OR = 3.09, 95% CI = 1.64 - 5.81 for drinking) compared with C-carriers without a history of smoking or excessive drinking, but no interactions were seen. The 1298CC genotype was only associated with increased risk among non-smokers (P < 0.05), and smoking was only associated with increased risks among 1298A-carriers (P < 0.01), but no significant interaction was seen. There was a synergistic interaction between the A1298C polymorphism and drinking (P < 0.05). The highest risk was seen for the CC-carriers with excessive drinking (OR = 7.24, 95% CI = 1.89 - 27.7) compared with the A-carriers without excessive drinking).

Conclusions

The C677T polymorphism was significantly associated with lung cancer risk. Although the A1298C polymorphism was not associated with lung cancer risk, a significant interaction with drinking was observed. Future studies incorporating data on folate intake may undoubtedly lead to a more thorough understanding of the role of the MTHFR polymorphisms in lung cancer development.