Email updates

Keep up to date with the latest news and content from BMC Medical Genetics and BioMed Central.

Open Access Highly Accessed Research article

Prevalence of H63D, S65C and C282Y hereditary hemochromatosis gene mutations in Slovenian population by an improved high-throughput genotyping assay

Marko Cukjati1*, Tomaž Vaupotič12, Ruth Rupreht1 and Vladka Čurin-Šerbec1

Author Affiliations

1 Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia

2 Institute of Biochemistry, University of Ljubljana, Medical Faculty, Vrazov trg 2, 1000 Ljubljana, Slovenia

For all author emails, please log on.

BMC Medical Genetics 2007, 8:69  doi:10.1186/1471-2350-8-69

Published: 23 November 2007

Abstract

Background

Hereditary hemochromatosis (HH) is a common genetic disease characterized by excessive iron overload that leads to multi-organ failure. Although the most prevalent genotype in HH is homozygosity for C282Y mutation of the HFE gene, two additional mutations, H63D and S65C, appear to be associated with a milder form of HH. The aim of this study was to develop a high-throughput assay for HFE mutations screening based on TaqMan technology and to determine the frequencies of HFE mutations in the Slovenian population.

Methods

Altogether, 1282 randomly selected blood donors from different Slovenian regions and 21 HH patients were analyzed for the presence of HFE mutations by an in-house developed real-time PCR assay based on TaqMan technology using shorter non-interfering fluorescent single nucleotide polymorphism (SNP)-specific MGB probes. The assay was validated by RFLP analysis and DNA sequencing.

Results

The genotyping assay of the H63D, S65C and C282Y mutations in the HFE gene, based on TaqMan technology proved to be fast, reliable, with a high-throughput capability and 100% concordant with genotypes obtained by RFLP and DNA sequencing. The observed frequency of C282Y homozygotes in the group of HH patients was only 48%, others were of the heterogeneous HFE genotype. Among 1282 blood donors tested, the observed H63D, S65C and C282Y allele frequency were 12.8% (95% confidence interval (CI) 11.5 – 14.2%), 1.8% (95% CI 1.4 – 2.5%) and 3.6% (95% CI 3.0 – 4.5%), respectively. Approximately 33% of the tested subjects had at least one of the three HH mutations, and 1% of them were C282Y homozygotes or compound heterozygotes C282Y/H63D or C282Y/S65C, presenting an increased risk for iron overload disease. A significant variation in H63D allele frequency was observed for one of the Slovenian regions.

Conclusion

The improved real-time PCR assay for H63D, S65C and C282Y mutations detection is accurate, fast, cost-efficient and ready for routine screening and diagnostic procedures. The genotype frequencies in the Slovenian population agree with those reported for the Central European populations although some deviations where observed in comparison with other populations of Slavic origin. Regional distribution of the mutations should be considered when planning population screening.