Open Access Research article

Subtle mutations in the SMN1 gene in Chinese patients with SMA: p.Arg288Met mutation causing SMN1 transcript exclusion of exon7

Qu Yu-jin1, Du Juan1, Li Er-zhen2, Bai Jin-li1, Jin Yu-wei1, Wang Hong1 and Song Fang1*

Author affiliations

1 Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China

2 Department of Neurology, Children’s Hospital Affiliated Capital Institute of Pediatrics, Beijing, China

For all author emails, please log on.

Citation and License

BMC Medical Genetics 2012, 13:86  doi:10.1186/1471-2350-13-86

Published: 20 September 2012

Abstract

Background

Proximal spinal muscular atrophy (SMA) is a common neuromuscular disorder resulting in death during childhood. Around 81 ~ 95% of SMA cases are a result of homozygous deletions of survival motor neuron gene 1 (SMN1) gene or gene conversions from SMN1 to SMN2. Less than 5% of cases showed rare subtle mutations in SMN1. Our aim was to identify subtle mutations in Chinese SMA patients carrying a single SMN1 copy.

Methods

We examined 14 patients from 13 unrelated families. Multiplex ligation-dependent probe amplification analysis was carried out to determine the copy numbers of SMN1 and SMN2. Reverse transcription polymerase chain reaction (RT-PCR) and clone sequencing were used to detect subtle mutations in SMN1. SMN transcript levels were determined using quantitative RT-PCR.

Results

Six subtle mutations (p.Ser8LysfsX23, p.Glu134Lys, p.Leu228X, p.Ser230Leu, p.Tyr277Cys, and p.Arg288Met) were identified in 12 patients. The p.Tyr277Cys mutation has not been reported previously. The p.Ser8LysfsX23, p.Leu228X, and p.Tyr277Cys mutations have only been reported in Chinese SMA patients and the first two mutations seem to be the common ones. Levels of full length SMN1 (fl-SMN1) transcripts were very low in patients carrying p.Ser8LysfsX23, p.Leu228X or p.Arg288Met compared with healthy carriers. In patients carrying p.Glu134Lys or p.Ser230Leu, levels of fl-SMN1 transcripts were reduced but not significant. The SMN1 transcript almost skipped exon 7 entirely in patients with the p.Arg288Met mutation.

Conclusions

Our study reveals a distinct spectrum of subtle mutations in SMN1 of Chinese SMA patients from that of other ethnicities. The p.Arg288Met missense mutation possibly influences the correct splicing of exon 7 in SMN1. Mutation analysis of the SMN1 gene in Chinese patients may contribute to the identification of potential ethnic differences and enrich the SMN1 subtle mutation database.

Keywords:
Spinal muscular atrophy; Survival motor neuron gene-1; Subtle mutation; Transcript