Email updates

Keep up to date with the latest news and content from BMC Medical Imaging and BioMed Central.

Open Access Highly Accessed Software

An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

Daniel R Messroghli12*, Andre Rudolph1, Hassan Abdel-Aty1, Ralf Wassmuth1, Titus Kühne2, Rainer Dietz1 and Jeanette Schulz-Menger1

Author Affiliations

1 Cardiac MRI Unit, Franz-Volhard-Klinik, Charité University Medicine, Berlin, Germany

2 Cardiovascular Imaging Unit, Department of Congenital Heart Defects and Pediatric Cardiology, Deutsches Herzzentrum Berlin, Germany

For all author emails, please log on.

BMC Medical Imaging 2010, 10:16  doi:10.1186/1471-2342-10-16

Published: 30 July 2010

Abstract

Background

In magnetic resonance (MR) imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization.

Results

After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI) T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data.

Conclusions

MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.