Email updates

Keep up to date with the latest news and content from BMC Infectious Diseases and BioMed Central.

Open Access Research article

Polyclonal activation of naïve T cells by urease deficient-recombinant BCG that produced protein complex composed of heat shock protein 70, CysO and major membrane protein-II

Yumiko Tsukamoto*, Yumi Maeda, Toshiki Tamura, Tetsu Mukai and Masahiko Makino

Author Affiliations

Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan

For all author emails, please log on.

BMC Infectious Diseases 2014, 14:179  doi:10.1186/1471-2334-14-179

Published: 2 April 2014



Mycobacterium bovis bacillus Calmette-Guérin (BCG) is known to be only partially effective in inhibiting M. tuberculosis (MTB) multiplication in human. A new recombinant (r) urease-deficient BCG (BCG-dHCM) that secretes protein composed of heat shock protein (HSP)70, MTB-derived CysO and major membrane protein (MMP)-II was produced for the efficient production of interferon gamma (IFN-γ) which is an essential element for mycobacteriocidal action and inhibition of neutrophil accumulation in lungs.


Human monocyte-derived dendritic cells (DC) and macrophages were differentiated from human monocytes, infected with BCG and autologous T cells-stimulating activity of different constructs of BCG was assessed. C57BL/6 mice were used to test the effectiveness of BCG for the production of T cells responsive to MTB-derived antigens (Ags).


BCG-dHCM intracellularly secreted HSP70-CysO-MMP-II fusion protein, and activated DC by up-regulating Major Histcompatibility Complex (MHC), CD86 and CD83 molecules and enhanced various cytokines production from DC and macrophages. BCG-dHCM activated naïve T cells of both CD4 and CD8 subsets through DC, and memory type CD4+ T cells through macrophages in a manner dependent on MHC and CD86 molecules. These T cell activations were inhibited by the pre-treatment of Ag-presenting cells (APCs) with chloroquine. The single and primary BCG-dHCM-inoculation produced long lasting T cells responsive to in vitro secondarily stimulation with HSP70, CysO, MMP-II and H37Rv-derived cytosolic protein, and partially inhibited the replication of aerosol-challenged MTB.


The results indicate that introduction of different type of immunogenic molecules into a urease-deficient rBCG is useful for providing polyclonal T cell activating ability to BCG and for production of T cells responsive to secondary stimulation.

Tuberculosis; BCG; T cell activation