Email updates

Keep up to date with the latest news and content from BMC Infectious Diseases and BioMed Central.

Open Access Research article

HIV-1 integrase resistance among antiretroviral treatment naive and experienced patients from Northwestern Poland

Miłosz Parczewski*, Dorota Bander, Anna Urbańska and Anna Boroń-Kaczmarska

Author Affiliations

Department of Infectious Diseases and Hepatology, Pomeranian Medical University, Szczecin, Poland

For all author emails, please log on.

BMC Infectious Diseases 2012, 12:368  doi:10.1186/1471-2334-12-368

Published: 21 December 2012

Abstract

Background

HIV integrase inhibitor use is limited by low genetic barrier to resistance and possible cross-resistance among representatives of this class of antiretrovirals. The aim of this study was to analyse integrase sequence variability among antiretroviral treatment naive and experienced patients with no prior integrase inhibitor (InI) exposure and investigate development of the InI drug resistance mutations following the virologic failure of the raltegravir containing regimen.

Methods

Sequencing of HIV-1 integrase region from plasma samples of 80 integrase treatment naive patients and serial samples from 12 patients with observed virologic failure on raltegravir containing treatment whenever plasma vireamia exceeded >50 copies/ml was performed. Drug resistance mutations were called with Stanford DB database and grouped into major and minor variants. For subtyping bootstrapped phylogenetic analysis was used; Bayesian Monte Carlo Marcov Chain (MCMC) model was implemented to infer on the phylogenetic relationships between the serial sequences from patients failing on raltegravir.

Results

Majority of the integrase region sequences were classified as subtype B; the remaining ones being subtype D, C, G, as well as CRF01_AE , CRF02_AG and CRF13_cpx recombinants. No major integrase drug resistance mutations have been observed in InI-treatment naive patients. In 30 (38.5%) cases polymorphic variation with predominance of the E157Q mutation was observed. This mutation was more common among subtype B (26 cases, 54.2%) than non-B sequences (5 cases, 16.7%), p=0.00099, OR: 5.91 (95% CI:1.77-22.63)]. Other variants included L68V, L74IL, T97A, E138D, V151I, R263K. Among 12 (26.1%) raltegravir treated patients treatment failure was observed; major InI drug resistance mutations (G140S, Q148H and N155H, V151I, E92EQ, V151I, G163R) were noted in four of these cases (8.3% of the total InI-treated patients). Time to the development of drug resistance ranged from 2.6 to 16.3 months with mean increase of HIV viral load of 4.34 (95% CI:1.86-6.84) log HIV-RNA copies/ml at the time of emergence of the major mutations. Baseline polymorphisms, including E157Q were not associated with the virologic failure on raltegravir.

Conclusions

In InI treatment naive patients polymorphic integrase sequence variation was common, with no major resistance mutants. In the treatment failing patients selection of drug resistance occurred rapidly and followed the typical drug resistance pathways. Preexisting integrase polymorphisms were not associated with the treatment failure.

Keywords:
HIV-1; Integrase inhibitors; Raltegravir; Antiretroviral treatment failure; Drug resistance mutations