Email updates

Keep up to date with the latest news and content from BMC Infectious Diseases and BioMed Central.

Open Access Technical advance

SNP-based real-time pyrosequencing as a sensitive and specific tool for identification and differentiation of Rickettsia species in Ixodes ricinus ticks

Elisabeth Janecek, Sabine Streichan and Christina Strube*

Author Affiliations

Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany

For all author emails, please log on.

BMC Infectious Diseases 2012, 12:261  doi:10.1186/1471-2334-12-261

Published: 18 October 2012

Abstract

Background

Rickettsioses are caused by pathogenic species of the genus Rickettsia and play an important role as emerging diseases. The bacteria are transmitted to mammal hosts including humans by arthropod vectors. Since detection, especially in tick vectors, is usually based on PCR with genus-specific primers to include different occurring Rickettsia species, subsequent species identification is mainly achieved by Sanger sequencing. In the present study a real-time pyrosequencing approach was established with the objective to differentiate between species occurring in German Ixodes ticks, which are R. helvetica, R. monacensis, R. massiliae, and R. felis. Tick material from a quantitative real-time PCR (qPCR) based study on Rickettsia-infections in I. ricinus allowed direct comparison of both sequencing techniques, Sanger and real-time pyrosequencing.

Methods

A sequence stretch of rickettsial citrate synthase (gltA) gene was identified to contain divergent single nucleotide polymorphism (SNP) sites suitable for Rickettsia species differentiation. Positive control plasmids inserting the respective target sequence of each Rickettsia species of interest were constructed for initial establishment of the real-time pyrosequencing approach using Qiagen’s PSQ 96MA Pyrosequencing System operating in a 96-well format. The approach included an initial amplification reaction followed by the actual pyrosequencing, which is traceable by pyrograms in real-time. Afterwards, real-time pyrosequencing was applied to 263 Ixodes tick samples already detected Rickettsia-positive in previous qPCR experiments.

Results

Establishment of real-time pyrosequencing using positive control plasmids resulted in accurate detection of all SNPs in all included Rickettsia species. The method was then applied to 263 Rickettsia-positive Ixodes ricinus samples, of which 153 (58.2%) could be identified for their species (151 R. helvetica and 2 R. monacensis) by previous custom Sanger sequencing. Real-time pyrosequencing identified all Sanger-determined ticks as well as 35 previously undifferentiated ticks resulting in a total number of 188 (71.5%) identified samples. Pyrosequencing sensitivity was found to be strongly dependent on gltA copy numbers in the reaction setup. Whereas less than 101 copies in the initial amplification reaction resulted in identification of 15.1% of the samples only, the percentage increased to 54.2% at 101-102 copies, to 95.6% at >102-103 copies and reached 100% samples identified for their Rickettsia species if more than 103 copies were present in the template.

Conclusions

The established real-time pyrosequencing approach represents a reliable method for detection and differentiation of Rickettsia spp. present in I. ricinus diagnostic material and prevalence studies. Furthermore, the method proved to be faster, more cost-effective as well as more sensitive than custom Sanger sequencing with simultaneous high specificity.

Keywords:
Rickettsia helvetica; Rickettsia monacensis; Rickettsia massiliae; Rickettsia felis; Ixodes ricinus; Diagnostic; Sequencing