Email updates

Keep up to date with the latest news and content from BMC Infectious Diseases and BioMed Central.

Open Access Highly Accessed Research article

Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay

Mareike Dabisch-Ruthe1, Tanja Vollmer1, Ortwin Adams2, Cornelius Knabbe1 and Jens Dreier1*

Author Affiliations

1 Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany

2 Institut für Virologie, Universitätsklinikum, Düsseldorf, Germany

For all author emails, please log on.

BMC Infectious Diseases 2012, 12:163  doi:10.1186/1471-2334-12-163

Published: 24 July 2012

Abstract

Background

A broad spectrum of pathogens is causative for respiratory tract infections, but symptoms are mostly similar. Therefore, the identification of the causative viruses and bacteria is only feasible using multiplex PCR or several monoplex PCR tests in parallel.

Methods

The analytical sensitivity of three multiplex PCR assays, RespiFinder-19, RespiFinder-SMART-22 and xTAG-Respiratory-Virus-Panel-Fast-Assay (RVP), were compared to monoplex real-time PCR with quantified standardized control material. All assays include the most common respiratory pathogens.

Results

To compare the analytical sensitivity of the multiplex assays, samples were inoculated with 13 different quantified viruses in the range of 101 to 105 copies/ml. Concordant results were received for rhinovirus, whereas the RVP detected influenzavirus, RSV and hMPV more frequently in low concentrations. The RespiFinder-19 and the RespiFinder-SMART-22 showed a higher analytical sensitivity for adenoviruses and coronaviruses, whereas the RVP was incapable to detect adenovirus and coronavirus in concentrations of 104 copies/ml. The RespiFinder-19 and RespiFinder-SMART-22A did not detect influenzaviruses (104 copies/ml) and RSV (103 copies/ml). The detection of all 13 viruses in one sample was only achieved using monoplex PCR. To analyze possible competitive amplification reactions between the different viruses, samples were further inoculated with only 4 different viruses in one sample. Compared to the detection of 13 viruses in parallel, only a few differences were found.

The incidence of respiratory viruses was compared in tracheal secretion (TS) samples (n = 100) of mechanically ventilated patients in winter (n = 50) and summer (n = 50). In winter, respiratory viruses were detected in 32 TS samples (64%) by RespiFinder-19, whereas the detection rate with RVP was only 22%. The most frequent viruses were adenovirus (32%) and PIV-2 (20%). Multiple infections were detected in 16 TS samples (32%) by RespiFinder-19. Fewer infections were found in summer (RespiFinder-19: 20%; RVP: 6%). All positive results were verified using monoplex PCR.

Conclusions

Multiplex PCR tests have a broad spectrum of pathogens to test at a time. Analysis of multiple inoculated samples revealed a different focus of the detected virus types by the three assays. Analysis of clinical samples showed a high concordance of detected viruses by the RespiFinder-19 compared to monoplex tests.