Email updates

Keep up to date with the latest news and content from BMC Infectious Diseases and BioMed Central.

Open Access Highly Accessed Open Badges Research article

Comparative evaluation of the potential impact of rotavirus versus hpv vaccination in GAVI-eligible countries: A preliminary analysis focused on the relative disease burden

Sun-Young Kim12, Steven Sweet1, Joshua Chang1 and Sue J Goldie12*

Author Affiliations

1 Center for Health Decision Science, Harvard School of Public Health, Boston MA, USA

2 Harvard Global Health Institute, Cambridge, MA, USA

For all author emails, please log on.

BMC Infectious Diseases 2011, 11:174  doi:10.1186/1471-2334-11-174

Published: 16 June 2011



Immunization policymakers at global and local levels need to establish priorities among new vaccines competing for limited resources. However, comparison of the potential impact of single vaccination programs is challenging, primarily due to the limited number of vaccine analyses as well as their differing analytic approaches and reporting formats. The purpose of this study is to provide early insight into how the comparative impact of different new vaccines could be assessed in resource-poor settings with respect to affordability, cost-effectiveness, and distributional equity.


We compared the health, economic, and financial consequences of introducing the two vaccines in 72 GAVI-eligible countries using a number of different outcome measures to evaluate affordability, cost-effectiveness, and distributional equity. We use simple static models to standardize the analytic framework and improve comparability between the two new vaccines. These simple models were validated by leveraging previously developed, more complex models for rotavirus and human papillomavirus (HPV).


With 70% coverage of a single-age cohort of infants and pre-adolescent girls, the lives saved with rotavirus (~274,000) and HPV vaccines (~286,000) are similar, although the timing of averted mortality differs; rotavirus-attributable deaths occur in close proximity to infection, while HPV-related cancer deaths occur largely after age 30. Deaths averted per 1000 vaccinated are 5.2 (rotavirus) and 12.6 (HPV). Disability-adjusted life years (DALYs) averted were ~7.15 million (rotavirus) and ~1.30 million (HPV), reflecting the greater influence of discounting on the latter, given the lagtime between vaccination and averted cancer. In most countries (68 for rotavirus and 66 for HPV, at the cost of I$25 per vaccinated individual) the incremental cost per DALY averted was lower than each country's GDP per capita. Financial resources required for vaccination with rotavirus are higher than with HPV since both genders are vaccinated.


While lifesaving benefits of rotavirus and HPV vaccines will be realized at different times, the number of lives saved over each target populations' lifetimes will be similar. Model-based analyses that use a standardized analytic approach and generate comparable outputs can enrich the priority-setting dialogue. Although new vaccines may be deemed cost-effective, other factors including affordability and distributional equity need to be considered in different settings. We caution that for priority setting in an individual country, more rigorous comparisons should be performed, using more comprehensive models and considering all relevant vaccines and delivery strategies.