Email updates

Keep up to date with the latest news and content from BMC Infectious Diseases and BioMed Central.

Open Access Highly Accessed Research article

Endotoxin tolerance and cross-tolerance in mast cells involves TLR4, TLR2 and FcεR1 interactions and SOCS expression: perspectives on immunomodulation in infectious and allergic diseases

Saulo F Saturnino1, Roberta O Prado2, José R Cunha-Melo2 and Marcus V Andrade1*

Author Affiliations

1 Department of Internal Medicine, School of Medicine, Federal University of Minas Gerais, Av. Prof. Alfredo Balena 190, Belo Horizonte, Minas Gerais, 30130100, Brazil

2 Department of Surgery, School of Medicine, Federal University of Minas Gerais, Av. Prof. Alfredo Balena 190, Belo Horizonte, Minas Gerais, 30130100, Brazil

For all author emails, please log on.

BMC Infectious Diseases 2010, 10:240  doi:10.1186/1471-2334-10-240

Published: 14 August 2010

Abstract

Background

The study of the endotoxin tolerance phenomenon in light of the recently defined roles of mast cells and toll-like receptors as essential components of the innate immune response and as orchestrators of acquired immunity may reveal potentially useful mechanisms of immunomodulation of infectious and allergic inflammatory responses, such as sepsis or asthma. Here we evaluated the phenomenon of direct tolerance of endotoxins, as well as the induction of cross-tolerance and synergism by stimulation with toll-like receptor-2 (TLR2) and FcεR1 agonists, in murine mast cells prestimulated with lipopolysaccharide (LPS). Additionally, we evaluated some stimulatory and inhibitory signaling molecules potentially involved in these phenomena.

Methods

MC/9 cells and primary bone marrow-derived mast cells obtained from C57BL/6 and TLR4-/- knock-out mice were sensitized to DNP-HSA (antigen) by incubation with DNP-IgE and were prestimulated with LPS for 18 hr prior to stimulation. Cultures were stimulated with LPS or Pam3Cys-Ser-(Lys)4 3HCl (P3C), a TLR2 agonist, individually or in combination with antigen. The production of IL-6 and TNFα, the phosphorylation of NFκB and p38 MAPK, and the expression of TLR4 and SOCS-1 and -3 were analyzed.

Results

We found that production of TNFα and IL-6 in murine mast cells that have been pretreated with LPS and challenged with TLR4 (LPS) or -2 (P3C) agonists was reduced, phenomena described as endotoxin tolerance (LPS) and cross-tolerance (P3C), respectively. The expression of TLR4 was not affected by LPS pretreatment. Our results show that the FcεR1 agonist DNP-HSA (antigen) interacts synergistically with LPS or P3C to markedly enhance production of cytokines (TNFα and IL-6). This synergistic effect with LPS and P3C was also attenuated by LPS pretreatment and was mediated by TLR4. These results may be attributed to the reduction in phosphorylation of the mitogen-activated protein kinase (MAPK), p38, and the transcription factor NFκB, as well as to an increase in the expression of the suppressors of cytokine signaling (SOCS)-1 and -3 proteins in LPS-pretreated mast cells.

Conclusions

These findings can be explored with respect to the modulation of inflammatory responses associated with infectious and allergic processes in future studies.