Email updates

Keep up to date with the latest news and content from BMC Infectious Diseases and BioMed Central.

Open Access Highly Accessed Research article

Developing guidelines for school closure interventions to be used during a future influenza pandemic

Nilimesh Halder, Joel K Kelso and George J Milne*

Author Affiliations

School of Computer Science and Software Engineering, University of Western Australia, Perth, Australia

For all author emails, please log on.

BMC Infectious Diseases 2010, 10:221  doi:10.1186/1471-2334-10-221

Published: 27 July 2010



The A/H1N1 2009 influenza pandemic revealed that operational issues of school closure interventions, such as when school closure should be initiated (activation trigger), how long schools should be closed (duration) and what type of school closure should be adopted, varied greatly between and within countries. Computer simulation can be used to examine school closure intervention strategies in order to inform public health authorities as they refine school closure guidelines in light of experience with the A/H1N1 2009 pandemic.


An individual-based simulation model was used to investigate the effectiveness of school closure interventions for influenza pandemics with R0 of 1.5, 2.0 and 2.5. The effectiveness of individual school closure and simultaneous school closure were analyzed for 2, 4 and 8 weeks closure duration, with a daily diagnosed case based intervention activation trigger scheme. The effectiveness of combining antiviral drug treatment and household prophyaxis with school closure was also investigated.


Illness attack rate was reduced from 33% to 19% (14% reduction in overall attack rate) by 8 weeks school closure activating at 30 daily diagnosed cases in the community for an influenza pandemic with R0 = 1.5; when combined with antivirals a 19% (from 33% to 14%) reduction in attack rate was obtained. For R0 >= 2.0, school closure would be less effective. An 8 weeks school closure strategy gives 9% (from 50% to 41%) and 4% (from 59% to 55%) reduction in attack rate for R0 = 2.0 and 2.5 respectively; however, school closure plus antivirals would give a significant reduction (~15%) in over all attack rate. The results also suggest that an individual school closure strategy would be more effective than simultaneous school closure.


Our results indicate that the particular school closure strategy to be adopted depends both on the disease severity, which will determine the duration of school closure deemed acceptable, and its transmissibility. For epidemics with a low transmissibility (R0 < 2.0) and/or mild severity, individual school closures should begin once a daily community case count is exceeded. For a severe, highly transmissible epidemic (R0 >= 2.0), long duration school closure should begin as soon as possible and be combined with other interventions.