Email updates

Keep up to date with the latest news and content from BMC Emergency Medicine and BioMed Central.

Open Access Highly Accessed Research article

Which diagnostic tests are most useful in a chest pain unit protocol?

Steve Goodacre12*, Thomas Locker12, Jane Arnold12, Karen Angelini1 and Francis Morris1

Author Affiliations

1 Medical Care Research Unit, Regent Court, 30 Regent Street, Sheffield, S1 4DA, UK

2 Emergency Department, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK

For all author emails, please log on.

BMC Emergency Medicine 2005, 5:6  doi:10.1186/1471-227X-5-6

Published: 25 August 2005

Abstract

Background

The chest pain unit (CPU) provides rapid diagnostic assessment for patients with acute, undifferentiated chest pain, using a combination of electrocardiographic (ECG) recording, biochemical markers and provocative cardiac testing. We aimed to identify which elements of a CPU protocol were most diagnostically and prognostically useful.

Methods

The Northern General Hospital CPU uses 2–6 hours of serial ECG / ST segment monitoring, CK-MB(mass) on arrival and at least two hours later, troponin T at least six hours after worst pain and exercise treadmill testing. Data were prospectively collected over an eighteen-month period from patients managed on the CPU. Patients discharged after CPU assessment were invited to attend a follow-up appointment 72 hours later for ECG and troponin T measurement. Hospital records of all patients were reviewed to identify adverse cardiac events over the subsequent six months. Diagnostic accuracy of each test was estimated by calculating sensitivity and specificity for: 1) acute coronary syndrome (ACS) with clinical myocardial infarction and 2) ACS with myocyte necrosis. Prognostic value was estimated by calculating the relative risk of an adverse cardiac event following a positive result.

Results

Of the 706 patients, 30 (4.2%) were diagnosed as ACS with myocardial infarction, 30 (4.2%) as ACS with myocyte necrosis, and 32 (4.5%) suffered an adverse cardiac event. Sensitivities for ACS with myocardial infarction and myocyte necrosis respectively were: serial ECG / ST segment monitoring 33% and 23%; CK-MB(mass) 96% and 63%; troponin T (using 0.03 ng/ml threshold) 96% and 90%. The only test that added useful prognostic information was exercise treadmill testing (relative risk 6 for cardiac death, non-fatal myocardial infarction or arrhythmia over six months).

Conclusion

Serial ECG / ST monitoring, as used in our protocol, adds little diagnostic or prognostic value in patients with a normal or non-diagnostic initial ECG. CK-MB(mass) can rule out ACS with clinical myocardial infarction but not myocyte necrosis(defined as a troponin elevation without myocardial infarction). Using a low threshold for positivity for troponin T improves sensitivity of this test for myocardial infarction and myocardial necrosis. Exercise treadmill testing predicts subsequent adverse cardiac events.