Email updates

Keep up to date with the latest news and content from BMC Cardiovascular Disorders and BioMed Central.

Open Access Highly Accessed Research article

Reproducibility of wrist home blood pressure measurement with position sensor and automatic data storage

Sakir Uen1*, Rolf Fimmers2, Miriam Brieger1, Georg Nickenig1 and Thomas Mengden1

Author Affiliations

1 Department of Cardiology and Vascular Medicine, University of Bonn, Bonn, Germany

2 Department of Biometry and Medical Statistics, University of Bonn, Bonn, Germany

For all author emails, please log on.

BMC Cardiovascular Disorders 2009, 9:20  doi:10.1186/1471-2261-9-20

Published: 27 May 2009

Abstract

Background

Wrist blood pressure (BP) devices have physiological limits with regards to accuracy, therefore they were not preferred for home BP monitoring. However some wrist devices have been successfully validated using etablished validation protocols. Therefore this study assessed the reproducibility of wrist home BP measurement with position sensor and automatic data storage.

Methods

To compare the reproducibility of three different(BP) measurement methods: 1) office BP, 2) home BP (Omron wrist device HEM- 637 IT with position sensor), 3) 24-hour ambulatory BP(24-h ABPM) (ABPM-04, Meditech, Hun)conventional sphygmomanometric office BP was measured on study days 1 and 7, 24-h ABPM on study days 7 and 14 and home BP between study days 1 and 7 and between study days 8 and 14 in 69 hypertensive and 28 normotensive subjects. The correlation coeffcient of each BP measurement method with echocardiographic left ventricular mass index was analyzed. The schedule of home readings was performed according to recently published European Society of Hypertension (ESH)- guidelines.

Results

The reproducibility of home BP measurement analyzed by the standard deviation as well as the squared differeces of mean individual differences between the respective BP measurements was significantly higher than the reproducibility of office BP (p < 0.001 for systolic and diastolic BP) and the reproducibility of 24-h ABPM (p < 0.001 systolic BP, p = 0.127 diastolic BP). The reproducibility of systolic and diastolic office versus 24-h ABPM was not significantly different (p = 0.80 systolic BP, p = 0.1 diastolic BP). The correlation coefficient of 24-h ABMP (r = 0.52) with left ventricular mass index was significantly higher than with office BP (r = 0.31). The difference between 24-h ABPM and home BP (r = 0.46) was not significant.

Conclusion

The short-term reproducibility of home BP measurement with the Omron HEM-637 IT wrist device was superior to the reproducibility of office BP and 24- h ABPM measurement. Furthermore, home BP with the wrist device showed similar correlations to targed organ damage as recently reported for upper arm devices. Although wrist devices have to be used cautious and with defined limitations, the use of validated devices with position sensor according to recently recommended measurement schedules might have the potential to be used for therapy monitoring.