Open Access Research article

The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L.

Chengming Fan1, Xu Wang1, Ruibo Hu2, Yahui Wang3, Chaowen Xiao1, Ying Jiang1, Xiaomei Zhang1, Changying Zheng3 and Yong-Fu Fu1*

Author Affiliations

1 MOA Key Lab of Soybean Biology (Beijing), National K’ey Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China

2 CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China

3 College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, China

For all author emails, please log on.

BMC Plant Biology 2013, 13:48  doi:10.1186/1471-2229-13-48

Published: 20 March 2013



The Phosphate transporter 1 (PHT1) gene family has crucial roles in phosphate uptake, translocation, remobilization, and optimization of metabolic processes using of Pi. Gene duplications expand the size of gene families, and subfunctionalization of paralog gene pairs is a predominant tendency after gene duplications. To date, experimental evidence for the evolutionary relationships among different paralog gene pairs of a given gene family in soybean is limited.


All potential Phosphate transporter 1 genes in Glycine max L. (GmPHT1) were systematically analyzed using both bioinformatics and experimentation. The soybean PHT1 genes originated from four distinct ancestors prior to the Gamma WGT and formed 7 paralog gene pairs and a singleton gene. Six of the paralog gene pairs underwent subfunctionalization, and while GmPHT1;4 paralog gene experienced pseudogenization. Examination of long-term evolutionary changes, six GmPHT1 paralog gene pairs diverged at multiple levels, in aspects of spatio-temporal expression patterns and/or quanta, phosphates affinity properties, subcellular localization, and responses to phosphorus stress.


These characterized divergences occurred in tissue- and/or development-specific modes, or conditional modes. Moreover, they have synergistically shaped the evolutionary rate of GmPHT1 family, as well as maintained phosphorus homeostasis at cells and in the whole plant.

Phosphate transporter 1; Gene duplication; Gene divergence; Phosphorus homeostasis; Evolution; Glycine max L.