Email updates

Keep up to date with the latest news and content from BMC Plant Biology and BioMed Central.

Open Access Highly Accessed Research article

The SLEEPER genes: a transposase-derived angiosperm-specific gene family

Marijn Knip, Sylvia de Pater and Paul JJ Hooykaas*

Author affiliations

Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands

For all author emails, please log on.

Citation and License

BMC Plant Biology 2012, 12:192  doi:10.1186/1471-2229-12-192

Published: 16 October 2012

Abstract

Background

DAYSLEEPER encodes a domesticated transposase from the hAT-superfamily, which is essential for development in Arabidopsis thaliana. Little is known about the presence of DAYSLEEPER orthologs in other species, or how and when it was domesticated. We studied the presence of DAYSLEEPER orthologs in plants and propose a model for the domestication of the ancestral DAYSLEEPER gene in angiosperms.

Results

Using specific BLAST searches in genomic and EST libraries, we found that DAYSLEEPER-like genes (hereafter called SLEEPER genes) are unique to angiosperms. Basal angiosperms as well as grasses (Poaceae) and dicotyledonous plants possess such putative orthologous genes, but SLEEPER-family genes were not found in gymnosperms, mosses and algae. Most species contain more than one SLEEPER gene. All SLEEPERs contain a C2H2 type BED-zinc finger domain and a hATC dimerization domain. We designated 3 motifs, partly overlapping the BED-zinc finger and dimerization domain, which are hallmark features in the SLEEPER family. Although SLEEPER genes are structurally conserved between species, constructs with SLEEPER genes from grapevine and rice did not complement the daysleeper phenotype in Arabidopsis, when expressed under control of the DAYSLEEPER promoter. However these constructs did cause a dominant phenotype when expressed in Arabidopsis. Rice plant lines with an insertion in the RICESLEEPER1 or 2 locus displayed phenotypic abnormalities, indicating that these genes are functional and important for normal development in rice. We suggest a model in which we hypothesize that an ancestral hAT transposase was retrocopied and stably integrated in the genome during early angiosperm evolution. Evidence is also presented for more recent retroposition events of SLEEPER genes, such as an event in the rice genome, which gave rise to the RICESLEEPER1 and 2 genes.

Conclusions

We propose the ancestral SLEEPER gene was formed after a process of retro-transposition during the evolution of the first angiosperms. It may have acquired an important function early on, as mutation of two SLEEPER genes in rice, like the daysleeper mutant in A. thaliana gave a developmental phenotype indicative of their importance for normal plant development.