Email updates

Keep up to date with the latest news and content from BMC Plant Biology and BioMed Central.

Open Access Research article

Adaptation of barley to mild winters: A role for PPDH2

M Cristina Casao1, Ildiko Karsai2, Ernesto Igartua1, M Pilar Gracia1, Otto Veisz2 and Ana M Casas1*

Author affiliations

1 Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain

2 Agricultural Research Institute, Hungarian Academy of Sciences, ARI-HAS, 2462 Martonvásár, Brunszvik u. 2, Hungary

For all author emails, please log on.

Citation and License

BMC Plant Biology 2011, 11:164  doi:10.1186/1471-2229-11-164

Published: 18 November 2011

Abstract

Background

Understanding the adaptation of cereals to environmental conditions is one of the key areas in which plant science can contribute to tackling challenges presented by climate change. Temperature and day length are the main environmental regulators of flowering and drivers of adaptation in temperate cereals. The major genes that control flowering time in barley in response to environmental cues are VRNH1, VRNH2, VRNH3, PPDH1, and PPDH2 (candidate gene HvFT3). These genes from the vernalization and photoperiod pathways show complex interactions to promote flowering that are still not understood fully. In particular, PPDH2 function is assumed to be limited to the ability of a short photoperiod to promote flowering. Evidence from the fields of biodiversity, ecogeography, agronomy, and molecular genetics was combined to obtain a more complete overview of the potential role of PPDH2 in environmental adaptation in barley.

Results

The dominant PPDH2 allele is represented widely in spring barley cultivars but is found only occasionally in modern winter cultivars that have strong vernalization requirements. However, old landraces from the Iberian Peninsula, which also have a vernalization requirement, possess this allele at a much higher frequency than modern winter barley cultivars. Under field conditions in which the vernalization requirement of winter cultivars is not satisfied, the dominant PPDH2 allele promotes flowering, even under increasing photoperiods above 12 h. This hypothesis was supported by expression analysis of vernalization-responsive genotypes. When the dominant allele of PPDH2 was expressed, this was associated with enhanced levels of VRNH1 and VRNH3 expression. Expression of these two genes is needed for the induction of flowering. Therefore, both in the field and under controlled conditions, PPDH2 has an effect of promotion of flowering.

Conclusions

The dominant, ancestral, allele of PPDH2 is prevalent in southern European barley germplasm. The presence of the dominant allele is associated with early expression of VRNH1 and early flowering. We propose that PPDH2 promotes flowering of winter cultivars under all non-inductive conditions, i.e. under short days or long days in plants that have not satisfied their vernalization requirement. This mechanism is indicated to be a component of an adaptation syndrome of barley to Mediterranean conditions.