Email updates

Keep up to date with the latest news and content from BMC Plant Biology and BioMed Central.

Open Access Research article

Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea

Mónica Meijón12, Isabel Feito3, Luis Valledor12, Roberto Rodríguez12 and María Jesús Cañal12*

Author Affiliations

1 Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain

2 Instituto de Biotecnología de Asturias, (Associated to CSIC) Edificio Santiago Gascón, C/Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain

3 SERIDA, Servicio Regional de Investigación Desarrollo Agroalimentario, Finca "La Mata", Apdo 13, E-33820 Grado, Asturias, Spain

For all author emails, please log on.

BMC Plant Biology 2010, 10:10  doi:10.1186/1471-2229-10-10

Published: 12 January 2010

Abstract

Background

The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as azalea, however it requires a thorough understanding of floral transition. Floral transition is achieved through a complex genetic network and regulated by multiple environmental and endogenous cues. Dynamic changes between chromatin states facilitating or inhibiting DNA transcription regulate the expression of floral induction pathways in response to environmental and developmental signals. DNA methylation and histone modifications are involved in controlling the functional state of chromatin and gene expression.

Results

The results of this work indicate that epigenetic mechanisms such as DNA methylation and histone H4 acetylation have opposite and particular dynamics during the transition from vegetative to reproductive development in the apical shoots of azalea. Global levels of DNA methylation and histone H4 acetylation as well as immunodetection of 5-mdC and acetylated H4, in addition to a morphological study have permitted the delimitation of four basic phases in the development of the azalea bud and allowed the identification of a stage of epigenetic reprogramming which showed a sharp decrease of whole DNA methylation similar to that is defined in other developmental processes in plants and in mammals.

Conclusion

The epigenetic control and reorganization of chromatin seem to be decisive for coordinating floral development in azalea. DNA methylation and H4 deacetylation act simultaneously and co-ordinately, restructuring the chromatin and regulating the gene expression during soot apical meristem development and floral differentiation.