Figure 2.

Effective information matrix and activity states for two complexes having the same value of Φ. a. Causal interactions diagram and analysis of complexes. Shown are two systems, one with a "divergent" architecture (left) and one with a "chain" architecture (right). The analysis of complexes shows that both contain a complex of four elements having a Φ value of 10. b. Effective information matrix. Shown is the effective information matrix for the two complexes above. For each complex, all bipartitions are indicated by listing one part (subset A) on the upper row and the complementary part (subset B) on the lower row. In between are the values of effective information from A to B and from B to A for each bipartition, color-coded as black (zero), red (intermediate value) and yellow (high value). Note that the effective information matrix is different for the two complexes, even though Φ is the same. The effective information matrix defines the set of informational relationships, or "qualia space" for each complex. Note that the effective information matrix refers exclusively to the informational relationships within the main complex (relationships with elements outside the main complex, represented here by empty circles, do not contribute to qualia space). c. State diagram. Shown are five representative states for the two complexes. Each is represented by the activity state of the four elements of each complex arranged in a column (blue: active elements; black: inactive ones). The five states can be thought of, for instance, as evolving in time due the intrinsic dynamics of the system or to inputs from the environment. Although the states are identical for the two complexes, their meaning is different because of the difference in the effective information matrix. The last four columns represent four special states, those corresponding to the activation of one element at a time. Such states, if achievable, would correspond most closely to the specific "quale" contributed by that particular element in that particular complex.

Tononi BMC Neuroscience 2004 5:42   doi:10.1186/1471-2202-5-42
Download authors' original image